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The interpretation of medical diagnostic images is an important activity: the number of 

images is growing continuously, and the number of specialist radiologists is limited 

globally, which often results in late diagnosis and possible clinical misinformation. The 

paper analyzes the BLIP model, which is an automatic medical image clinical captioning 

model. To refine the BLIP model, a methodology was designed based on more than 

81,000 radiology images with Unified Medical Language System (UMLS) identifiers, 

which were obtained from the ROCO (Radiology Objects in Context) dataset. A 

representative subset of 1,000 images was chosen to fit within computational 

limitations- 800 images were used in training, 100 in validation and 100 in testing, but 

with the preservation of representation across major imaging modalities. They trained 

the model on transformer-based encoder-decoder with cross-attention mechanisms. The 

four key contributions of this work are (1) domain-specific fine-tuning of the model to 

the radiological setting, (2) the use of standardized medical terminology by using UMLS 

concept unique identifiers, (3) integration of explainable AI with attention heatmaps and 

post-hoc explanations (SHAP and LIME), and (4) evaluation of performance using 

accepted NLP metrics. The model attained a high semantic and clinical agreement with 

quantitative scores of 0.7300 (BLEU-4), 0.6101 (METEOR), and 0.8405 (ROUGE). 

These results prompt the idea that AI-based image captioning has a considerable 

potential in facilitating clinical documentation and increasing the reliability of 

radiological assessments. 
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1. Introduction  

In contemporary medical practice, accurate 

and timely diagnostics are fundamental to 

effective patient care. However, numerous 

challenges, such as misdiagnoses, delays in test 

results, and the complexity of interpreting 

radiological scans, continue to hinder clinical 

decision-making. Medical imaging modalities 

such as X-ray, CT scans, and MRI generate vast 

amounts of diagnostic data, requiring expert 

analysis by radiologists. The increasing volume 
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of medical images, coupled with a global 

shortage of radiology specialists, further 

exacerbates delays, increasing the risk of 

diagnostic errors and placing additional 

financial strain on healthcare systems. These 

challenges underscore the urgent need for AI-

driven solutions capable of generating precise, 

standardized, and interpretable image captions 

to support radiologists in diagnostic decision-

making. 

Recent advancements in deep learning and 

neural networks within artificial intelligence 

https://djes.info/index.php/djes
mailto:enasabbas1111@gmail.com
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(AI) have significantly improved medical image 

interpretation, enhancing both efficiency and 

accuracy. In particular, image captioning 

models, which automatically generate 

descriptive text from images, have shown 

promise in radiology applications. Among the 

state-of-the-art solutions, the Bootstrapping 

Language-Image Pre-training (BLIP) model [1] 

has emerged as a powerful multimodal 

approach, effectively integrating visual and 

textual processing within an encoder-decoder 

framework. BLIP has demonstrated remarkable 

performance in general-domain image-text 

tasks; however, its application in medical 

diagnostics remains underexplored. Existing 

image captioning models often fail to meet the 

rigorous demands of medical diagnostics due to: 

 Lack of domain-specific knowledge; 

General image captioning models lack medical 

terminology awareness, often producing 

ambiguous or clinically irrelevant descriptions. 

 Inadequate interpretability; most models do 

not provide explainability mechanisms, making 

them difficult to validate in clinical 

environments. 

 Insufficient generalizability; many existing 

models perform well on general image datasets 

but struggle with medical images due to 

variations in pathology presentation, imaging 

modalities, and dataset biases. 

 Limited dataset integration; current 

methods rarely incorporate structured medical 

knowledge bases, such as the Unified Medical 

Language System (UMLS), which standardizes 

medical terminology and improves caption 

coherence. 

To address these critical limitations, our 

study presents a novel framework that integrates 

the BLIP model with a UMLS-coded radiology 

dataset, offering clinically meaningful, 

standardized caption generation for medical 

images. This study introduces the following key 

innovations: 

1. We adapted the BLIP model through fine-

tuning it using a large radiology dataset 

which exceeds 81,000 images to obtain 

domain-specific patterns and medical 

diagnostic elements necessary for clinical 

practice. A customized adaptation phase 

helps the model create captions compatible 

with medical standards, thus improving the 

accuracy and clarity of radiology reports. 

2. This approach differs from previous studies 

since our framework uses UMLS Concept 

Unique Identifiers (CUIs) during training to 

standardize medical terminology. The 

method maintains consistent terminology 

through this procedure, which leads to 

better clinical trustworthiness in the 

generated captions for improved 

educational practices and automated 

reporting functions. 

3. The XAI techniques including attention 

heatmaps together with SHAP and LIME 

post-hoc explanations serve to demonstrate 

the model's caption generation process to 

clinicians. The successful implementation 

of this step builds essential trust between 

clinicians and AI for healthcare workflow 

usage. 

4. A full performance assessment of the model 

uses current natural language processing 

metrics which include BLEU, METEOR 

and ROUGE scores. The model benefits 

from statistical significance analysis, which 

uses confidence intervals and variance to 

build dependable results for medical usage 

applications. 

By enhancing AI-driven image captioning 

capabilities, this study provides a scalable, 

efficient, and clinically interpretable solution for 

medical diagnostics. The proposed framework 

bridges the gap between state-of-the-art AI 

models and real-world radiology applications, 

improving diagnostic efficiency, 

standardization of medical reporting, and the 

accessibility of AI-assisted decision-making 

tools in clinical practice. Through this research, 

we establish a foundational step toward 

integrating AI-based captioning models into 

modern healthcare systems, paving the way for 

faster, more accurate, and trustworthy medical 

imaging interpretations. 

2. Related work 

The most comprehensive source, the widely 

referred dermatology textbook regarding the 

interpretation of skin lesions [3], maintains that 
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the analysis of skin is very much like reading 

text. In the course of performing a skin 

examination, every skin lesion related to a 

particular disease is characterized in a certain 

way. A detailed discussion of these lesions is 

actually very similar to combining words to 

make a sentence or including different 

paragraphs. Physicians start with determining 

whether the lesion is macular, papular, nodular, 

and so forth, and what characteristics the lesion 

has (round, oval, brown, red with blurred 

margins, etc.); then the physicians categorize it 

as centralized or evenly distributed and so on, 

forming an entire “paragraph.” Frequently, an 

all-encompassing account may result in 

obtaining the precise diagnosis. Hence, 

establishment of lesion type, shape, color, 

arrangement, margins, distribution and 

consistency forms the core diagnosis principles 

in dermatological field [2]. Realizing that the 

formulation of this problem is similar to that of 

image captioning, this study intends to propose 

an artificial intelligence algorithm replicating 

this interpretative process. 

The image captioning system uses two steps 

of feature extraction followed by language 

modeling; textbook keywords identify symptom 

features yet require combined keywords for sign 

evaluation. It proves challenging to perform 

automatic assessments of generated image 

descriptions. The multimodal fusion 

architecture from Zhao et al. [3] signifies a 

groundbreaking development for image 

captioning through its ability to merge multiple 

types of input information for generating 

contextually rich and sophisticated captions. 

The approach combines the strengths of CNNs 

for extracting visual features and RNNs for 

textual features, through which it improves the 

model's comprehension of healthcare content. 

The integrated data system facilitates a detailed 

analysis of pictures, which proves essential for 

difficult medical tests. The high complexity of 

data inputs causes limitations through increased 

processing demands and overfitting potential, 

which results in inefficient training processes 

that become more difficult to execute. Multiple 

types of image captioning research exist 

according to the approach-based classification 

structure that scholars have established [4]. The 

researchers in [5] introduced an attribute-

assisted teacher-critical training method to boost 

the captioning model’s educational progress. In 

image captioning evaluation, sentence-level 

information is often overlooked. Contrastive 

semantic similarity learning was applied in [6] 

to capture sentence-level representation, with 

single-branch, dual-branch, and triple-branch 

model structures developed to capture different 

levels of detail. While attention-based models 

frequently focus on individual visual features, 

Wang and Gu [7] emphasized the relationships 

between image features, a critical aspect for 

generating coherent captions.    

Medical images are increasingly integral to 

diagnostic processes. A learning-based 

framework for generating image captions was 

proposed in [8] to efficiently produce skin 

image reports. In medical diagnostics 

employing deep learning, there is often a trade-

off between enhancing model performance and 

maintaining explainability. Barata et al. [9] 

sought to address this limitation in a skin cancer 

diagnostic system, noting that enhanced 

performance can diminish explainability due to 

syntactic complexity and lengthy sentences. The 

Siamese neural network used in that study did 

not yield satisfactory results for biomedical text 

similarity evaluation. Similarly, self-attention 

models, like those developed by Li et al. [10], 

offer significant improvements in handling 

long-range dependencies within data. 

Advantages of self-attention include its ability 

to focus selectively on different parts of the 

input sequence, important for medical images 

where relevant features may be spread across 

the image. This model is particularly effective in 

understanding complex sentence structures in 

lengthy medical reports, which can enhance the 

accuracy and relevance of generated captions. 

Limitations of self-attention models often 

involve their scalability and the quadratic 

increase in computational resources as sequence 

length increases, which can be prohibitive for 

large datasets commonly used in medical image 

processing. In [11], the semantic representation 

of each sentence was embedded for external 

semantic parser evaluation. 

As the volume of medical images and 

reporting grows, it increasingly burdens 
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physicians. To alleviate this workload, the 

authors of [12] and [13] developed models to 

generate draft reports from related images. 

Given the differences between patient and 

normal images, a specialized X-ray image-

captioning model was introduced in [12] using a 

decoder based on either a transformer or long 

short-term memory (LSTM). Notably, [13] 

highlighted the repetitive occurrence of specific 

medical terms across reports. 

For continuity of medical terminology in the 

reports auto-generated, Wang et al. [13] 

developed a model which consists of template 

matching and sentence synthesis. To address 

human-centric and remote sensing image 

captioning, Yang et al. [14] proposed the 

HCCM to generate captions about human 

actions from associated images. Furthermore, 

Wang and Zhang [15] and Ye et al. [16] 

introduced a Visual Alignment Attention 

(VAA) model and a Joint-Training Two-Stage 

(JTTS) approach for remote sensing image 

captioning.  

Table 1 provides a comprehensive summary 

of related work in the fields of image captioning 

and medical image analysis. It highlights the key 

focus areas, methodologies, problems 

addressed, main contributions, and datasets used 

by each referenced study. This comparative 

overview helps position the current work within 

the broader research landscape and identifies 

existing gaps and innovations in the domain. 

 

Table 1: Summary of related work in image captioning and medical image analysis 

Reference Focus Area Model/Method Problem Addressed Key Contribution 
Dataset Used (if 

applicable) 

Wolff et al., 

2012 [2] 

Dermatological 

Diagnostic 

Techniques 

Textual 

Analysis in 

Dermatology 

Lack of structured 

approach to skin lesion 

diagnosis 

Describes skin lesion 

diagnosis as a textual 

composition process, 

requiring analysis of 

shape, color, and 

margins. 

Not applicable 

Zhao et al., 

2019 [3] 

Image 

Captioning 

Technologies 

Multimodal 

Fusion 

Architecture 

Difficulty in generating 

accurate image-text 

representations 

Proposed a multi-

modal architecture 

for generating image 

captions, integrating 

CNN, feature 

representation, 

language CNN, and 

RNN. 

MS COCO, 

ImageNet 

Bai et al., 

2018 [4] 

Classification 

Techniques in 

Captioning 

Captioning 

Classification 

Models 

Lack of standardized 

classification in 

captioning approaches 

Categorized different 

image captioning 

techniques, providing 

a taxonomy for 

model comparison. 

Various open-

source datasets 

Huang et al., 

2022 [5] 

Training 

Strategies for 

Caption Models 

Attribute-

Assisted 

Learning 

Ineffective learning 

strategies in caption 

models 

Introduced an 

attribute-assisted 

teacher-critical 

training strategy to 

enhance model 

learning efficiency. 

MS COCO 

Zeng et al., 

2022 [6] 

Semantic 

Analysis in 

Captioning 

Contrastive 

Learning 

Models 

Loss of sentence-level 

semantic coherence 

Applied contrastive 

learning to improve 

sentence-level 

semantic similarity in 

captions. 

Private dataset 

Wang et al., 

2022 [7] 

Visual Attention 

Mechanisms 

Visual 

Relationships 

Focus 

Limited attention 

mechanisms in image 

captioning 

Focused on modeling 

visual relationships to 

improve contextual 

MS COCO 
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coherence in 

generated captions. 

Wu et al., 

2022 [8] 

Automated 

Reporting for 

Dermatology 

Learning 

Frameworks for 

Skin Imaging 

Need for automation in 

dermatology report 

generation 

Developed a 

learning-based 

framework to 

automatically 

generate structured 

skin image reports. 

ISIC 

(International 

Skin Imaging 

Collaboration) 

Barata et al., 

2021 [9] 

Challenges in 

Diagnostic 

Explainability 

Siamese 

Networks for 

Skin Cancer 

Trade-off between 

model performance and 

explainability 

Addressed challenges 

in explainability for 

skin cancer 

diagnostics, noting 

the impact of 

syntactic complexity. 

HAM10000 

dataset 

Li et al., 2021 

[10] 

Handling 

Complex Syntax 

in Medical Texts 

Self-Attention 

Models 

Difficulty in processing 

complex medical 

sentences 

Designed a self-

attention model to 

enhance readability 

and structure in 

lengthy medical 

reports. 

MIMIC-CXR 

Bölücü et al., 

2023 [11] 

Sentence-Level 

Semantic 

Evaluation 

Semantic 

Embedding 

Techniques 

Lack of semantic 

representation in NLP 

captioning 

Used sentence-level 

embeddings to 

improve the external 

evaluation of 

semantic parsers. 

Not specified 

Park et al., 

2021 [12] 

X-ray Image 

Captioning 

Transformer/LS

TM Decoders 

Need for specialized 

medical image 

captioning 

Proposed an X-ray 

captioning model 

using Transformer or 

LSTM decoders to 

improve diagnostic 

descriptions. 

MIMIC-CXR, IU 

X-ray 

Wang et al., 

2022 [13] 

Medical 

Terminology 

Consistency 

Template 

Matching and 

Sentence 

Synthesis 

Inconsistency in 

medical terminology 

usage 

Developed a unified 

model to ensure 

consistent 

terminology in AI-

generated medical 

reports. 

CheXpert 

Yang et al., 

2022 [14] 

Human-Centric 

Image 

Captioning 

Human-Centric 

Captioning 

Model (HCCM) 

Lack of human-action 

descriptions in image 

captioning 

Created a model 

specifically designed 

to generate captions 

for human activities 

in images. 

MPII Human 

Pose Dataset 

Zhang et al., 

2019, Ye et 

al., 2022 [15, 

16] 

Remote Sensing 

Captioning 

Visual 

Alignment and 

Joint-Training 

Models 

Difficulty in aligning 

visual and textual 

features for remote 

sensing 

Proposed visual 

alignment and joint-

training methods to 

enhance remote 

sensing image 

captioning. 

Remote Sensing 

Image Dataset 

3. Proposed methodology 

The schema depicted in Figure 1 shows a 

step-by-step process for BLIP (Bootstrapping 

Language-Image Pretraining) model-based 

automated medical image captioning that 

produces descriptive outcomes relevant for 

clinical use. ROCO dataset serves as the 

foundational component of this workflow 

because it contains a large array of radiology 

images that consist of X-rays and CT scans as 

well as MRIs and angiography. The model 
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requires standardized data from medical images 

so preprocessing ensures proper data 

preparation during the process of format 

transitioning and resolution standardization. 

Preprocessing operates on the data by 

performing manipulations, normalization 

processes, splitting the dataset and resizing or 

scaling images. To facilitate effective model 

training and evaluation the dataset needs to be 

split into training, validation and test sets while 

all images must undergo preprocessing to 

achieve consistent 256 × 256 pixels resolution 

and standardized format. 

The processed dataset then proceeds to be 

evaluated using the BLIP model featuring an 

encoder-decoder framework based on 

transformer operations. Through its feed-

forward layers and self-attention processes the 

image encoder retrieves important visual 

characteristics to detect complex medical 

patterns as well as anatomical structures 

together with pathological markers. The pre-

processed features move through three essential 

modules named ITC (Image-Text Contrastive 

Learning) and ITM (Image-Text Matching) and 

LM (Language Model). The ITC module 

connects visual image features to textual content 

in order for the model to develop associations 

between picture patterns and related medical 

vocabulary. The ITM module builds upon this 

system because it evaluates caption relevance 

through analysis of text descriptions in the 

dataset to strengthen semantic ties. The LM 

module (Language Model) applies cross-

attention and causal self-attention layers to 

produce the last captions that maintain both 

clinical meaning and grammatical structure and 

contextual coherence. 

The NLP evaluation process uses three 

common metrics known as BLEU (Bilingual 

Evaluation Understudy), METEOR (Metric for 

Evaluation of Translation with Explicit 

Ordering), and ROUGE (Recall-Oriented 

Understudy for Gisting Evaluation) for 

evaluating generated captions. A BLEU score 

computes n-gram matches between automated 

text and normal reference examples to 

determine syntactical agreement between them. 

Because the METEOR score manages 

synonyms and paraphrasing it proves highly 

valuable for measuring medical text 

consistency. The ROUGE evaluation method 

analyzes complete sequences to verify that the 

produced captions include all vital diagnostic 

terminology present in baseline descriptions. 

The results' robustness can be validated through 

the application of statistical methods which 

determine stability and reliability of generated 

captions within multiple system runs. 

A clinical output from this pipeline 

generates precise medical image descriptions 

which enable rapid standard radiology 

reporting. An automated captioning system 

presents multiple benefits to radiologists 

through streamlined workflows and quicker 

diagnosis and standardized medical 

documentation. Radiologists can utilize 

attention heatmaps together with SHAP 

(SHapley Additive exPlanations) and LIME 

(Local Interpretable Model-Agnostic 

Explanations) to examine how the model 

develops captions as well as to prove its 

accuracy for clinical use. The future 

development will center on data diversity 

expansion as well as model optimization for 

complicated multi-label captions alongside on-

site healthcare professional verification to 

achieve real-world medical application 

integration. 
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Figure 1. Proposed scheme 

3.1 Data overview 

This research analysis deploys more than 

81,000 medical images which were obtained 

from different imaging modalities. This 

database applies different imaging types like 

chest X-rays as well as computed tomography 

(CT) scans and magnetic resonance imaging 

(MRI) scans and angiography images which 

provide universal use throughout multiple 

diagnostic applications. The dataset included 

medical image captioning pairs which combine 

detailed written text that describes significant 

clinical observations with each single medical 

picture. Multiple imaging formats combined 

with structured annotation types give the 

database exceptionally strong capabilities for AI 

instruments to create medical reports and 

establish precise diagnoses. 

Table 2 presents a detailed summary of the 

dataset used in this study, outlining key 

attributes such as the number of images, 

imaging modalities, caption statistics, UMLS 

integration, preprocessing and augmentation 

techniques, as well as the dataset split for 

training, validation, and testing. This overview 

provides essential context for understanding the 

dataset's structure and suitability for training 

image captioning models in the medical domain. 

The radiology images in this paper were 

obtained by the ROCO (Radiology Objects in 

COntext) dataset: a large publicly available 

dataset, which comprises more than 81,000 

annotated radiology images published in the 

literatures. ROCO contains Unified Medical 

Language System (UMLS) concept identifiers, 

which provide semantic stability of medical 

terms. The data can be found in [28].  
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The dataset's images come with at least one 

medical description annotation which provides 

extensive medical content. The dataset contains 

approximately 2.5 million image captions, 

which contributes to various description 

methods that enhance training efficacy. The 

captions remain between 8 and 25 words and 

they measure an average of 15 words each while 

maintaining detailed information yet staying 

direct. The dataset features an essential feature 

that employs Unified Medical Language System 

(UMLS) Concept Unique Identifiers (CUIs) to 

standardize medical vocabulary present in 

different reports. The inclusion of CUIs into the 

dataset establishes standardized medical 

diagnostic terms while making the data valuable 

for using clinical AI techniques. According to 

the dataset, a single X-ray image gets two 

UMLSCUIs (C3541877 and C0817096) when it 

includes the diagnostic term "dextrocardia." 

This ensures standardization across medical 

classification and diagnosis systems. 

The deep learning applications required 

high-quality images from the dataset, so 

researchers performed extensive processing on 

all inputs. Deep learning models received 

standardized (224 × 224 × 3) dimension images 

throughout the preprocessing process. The team 

employed noise reduction and contrast 

enhancement methods primarily on CT and MRI 

images so that imaging artifacts would decrease 

while image clarity would increase. 

Performance achieved stability during training 

by using data augmentation procedures which 

included rotating images along with both 

horizontal and vertical flippings and adjusting 

brightness levels to create more generalized 

outputs. 

The dataset was thoroughly split in three 

subsets to maximize training performance and 

reliability of evaluation, regarding the 

limitations on computational resources. To 

balance between the modality and diversity of 

captions and at the same time keep the resource 

usage manageable, a representative sub-set of 

1,000 images was sampled out of the complete 

ROCO dataset : 

 Training Set: 800 images for model 

learning. 

 Validation Set: 100 images for 

hyperparameter tuning and performance 

optimization. 

Test Set: 100 images for final model evaluation 

and unbiased performance assessment. 

With diverse imaging modalities, well-

organized medical language, and high-quality 

annotations, this dataset is considered a 

benchmark dataset for developing AI-based 

medical imaging studies. This focus on 

integrating UMLS CUIs, modality diversity, 

preprocessing enhancements enables the 

support for automated medical image 

captioning, thereby improving the diagnostic 

efficiency and consistency for various clinical 

applications. 

Table 2: Dataset summary table 

Attribute Details 

Total Images 81,000+ 

Imaging Modalities X-rays, CT scans, MRI scans, Angiography 

Number of Captions per Image 2.5 (on average) 

Average Caption Length 8–25 words (mean: 15 words) 

UMLS Intégration Yes (Concept Unique Identifiers for standardization) 

Dataset Preprocessing Resized (224 × 224 × 3), noise reduction, contrast enhancement 

Data Augmentation Rotation, flipping, brightness adjustment 

Training Set Size 800 images 

Validation Set Size 100 images 

Test Set Size 100 images 
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Figure 2. Sample of the dataset 

Figure 2 presents a sample from the ROCO 

dataset, showcasing the diversity of medical 

imaging and the standardized captions 

associated with each image. 

Imaging modality variation and supply of 

standardized medical terminology, which make 

the model capable of addressing multiple image-

captioning tasks. This, in turn, increases the 

model’s ability to produce a better-quality set of 

captions for clinical applications, which are 

crucial in medical diagnosis and reporting. 

These are some pictures from the ROCO 

dataset: Only text descriptions are presented as 

captions, but UMLS identifiers and modalities 

are also pointed out. One picture is of the typical 

chest X-ray, and the detail at the bottom of the 

picture has the word “dextrocardia” written on 

it. This is alongside the UMLS codes 

(C3541877, C0817096) that refer to the 

particular medical concepts and the ‘Modality’ 

label that labels the image as an ‘X-ray.’ 

The second interpretation regards it as a 

panoramic X-ray, illustrated with a caption 

which states that an image has been taken to 

show a radiolucent area in the left ramus. This 

description is linked with the code C1561543; 

the modality label reasserts that it is an “X-ray.” 

The third image is the abdominopelvic CT scan 

that gave the caption that states that there is air 

in the hepatic veins and an air contrast level in 

the inferior vena cava. Other related medical 

terms use UMLS codes C0023884, C1696103, 
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C0042449, C0205054, while the label under the 

modality categorizes the image as a CT. 

The last picture in the figure is an 

angiography image, and the description of the 

image explains that the LIPV (left inferior 

pulmonary vein) is compressed and narrowed at 

the ostium. Consistent UMLS codes are 

C0021153, C0002978, C1829459; this image 

gets the modality label. 

These examples illustrate the heterogeneity 

of imaging studies contained in the ROCO 

dataset and illustrate how each image is 

associated with the uniformly generated 

captions and UMLS codes. This approach is 

useful to bring context to each image and, 

furthermore, to maintain medical language 

uniformity across the dataset, which is crucial in 

training models to generate accurate image 

descriptions. 

This investigation segmented its data into 

three subsections for training purposes and 

validation tests and subsequent testing 

procedures. The training subset contained 800 

data sets that used (224, 224, 3) for image size 

alongside 145 features and labels. The 

validation set utilized 100 samples structured in 

the same manner as training samples, with 

matching (224, 224, 3) image dimensions across 

all subsets. The test samples included one 

hundred examples with analogue data 

organization to both training and validation data 

sets. The data arrangement through partitioning 

allowed model developers to perform training 

and hyperparameter optimization and testing 

while preserving data integrity and achieving 

generalized results. The researchers chose (224, 

224, 3) as the image dimension, which matches 

state-of-the-art deep learning models' 

requirements for processing visual information 

across all subsets. 

3.1.1 Dataset sampling strategy 

The ROCO (Radiology Objects in Context) 

dataset ROCO (Radiology Objects in Context) 

is a collection of more than 81,000 annotated 

radiology images of various modalities (e.g., X-

rays, CT scans, MRIs, and angiography) with 

captions and UMLS identifiers. Because of the 

computational resources limitation, this 

research empirically sampled 1,000 images to 

make sure the training and evaluation are 

affordable, and the selected images maintain the 

modality and semantic diversity of the dataset. 

This subset was further partitioned into 800 

training images, 100 validation images and 100 

test images. The selection process was such that 

it offered a balanced selection of medical 

findings, modalities and caption complexity. 

Such an approach allowed effective 

experimentation without sacrificing the 

performance or generalizability of the models, 

as is evidenced by the high evaluation scores. 

3.2 Preprocessing 

Before training deep learning models for 

caption generation of radiology images, dataset 

preprocessing serves as a vital step to 

standardize and balance data for efficient model 

training purposes. Using the entire dataset of 

more than 81,000 medical images from various 

modalities including chest X-rays, CT scans, 

MRI scans, and angiography was unfeasible for 

computational processing. The research team 

selected a subset of 800 training samples as well 

as 100 validation samples and 100 test samples 

to address resource restrictions without 

sacrificing dataset variety. The chosen portion 

maintains equal numbers of normal and 

abnormal medical images for various imaging 

techniques, allowing the model to understand 

various diseases. 

The specialist team applied a uniform 256 × 

256 pixels resolution for all imaging files to 

guarantee equal processing while maintaining 

clinically important image features. Smooth 

processing becomes possible in the BLIP 

model’s ViT encoder because all inputs follow 

standardized dimensions. Class imbalance 

presents a major problem for medical imaging 

datasets because normal chest abnormalities 

dominate over rare disease cases. A 

combination of data augmentation methods was 

used especially for minority classes through 

image adjustments including rotation and 

flipping and contrast changes and brightness 

manipulations. The additions boost dataset 

variability through artificial means, which 

improves the model's capacity to handle new 
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unseen data points without falling into dominant 

class overfitting. 

The presence of noise and imaging quality 

inconsistencies resulting from equipment 

inconsistency as well as patient-related factors 

affects radiology images. The application of 

Gaussian filtering for noise reduction and the 

implementation of the histogram equalization 

technique for improved contrast accomplished 

better visibility of diagnostic elements. The 

preprocessing operation protects the model from 

corrupting meaningful visual features by 

discarding unnecessary imaging noise, thus 

enhancing its eventual captioning accuracy. 

The BLIP model needs image and text 

processing together, so caption preprocessing 

worked as a vital aspect for the model. Each 

caption received processing from the Long 

Range Arena (LRA) Bootstrapping Language-

Image Pretraining (BLIP) tokenizer that 

converted the written descriptions into 

numerical tokenized sequences. Sequence 

padding was implemented to normalize the 

inputs by extending shorter captions to match 

the length of the longest captions. Special 

markers were incorporated for start and end 

points of captions so the decoder could identify 

sentences while generating logical outputs. 

Standardizing the medical data before entering 

it helps the model acquire organized clinical 

terminology while lowering textual errors 

present in the final reports.  

A custom collate function optimized the 

computational performance by delivering 

proper batch preparation. The custom collate 

function extends all captions through dynamic 

padding so they match the length of the most 

extended sequence without any information 

reduction. The system generated attention 

masks that made it possible for the decoder to 

distinguish between real text tokens and padding 

tokens so it only dealt with meaningful words. 

The processed images together with tokenized 

captions automatically moved between 

computing devices (CPU/GPU) for efficient 

training operations. 

These preprocessing methods helped 

develop a clean, well-balanced dataset which 

maintained a structured data format to prevent 

performance-damaging biases. The 

modifications boost BLIP-based medical image 

captioning model performance so it can produce 

accurate clinical descriptions from various 

medical imaging sources. These initiatives serve 

the purpose of developing AI-enabled automatic 

medical reporting which enhances diagnostic 

capability while supporting healthcare 

practitioners during their decision-making 

process. 

3.3 Rationale for Choosing BLIP 

The BLIP (Bootstrapping Language-Image 

Pretraining) model served as our choice for 

medical image captioning automation because 

its outstanding performance matched medical 

diagnosis requirements. BLIP stands apart from 

generalized text-image training such as ViLT 

and LXMERT because it provides domain-

specialized capabilities that tailor to medical 

image-language pairs. The medical field 

depends on this capability to achieve medical 

terminology precision together with accurate 

captions in context. The vision and language 

pretraining capability of BLIP enables better 

understanding of complex image-text 

connections, resulting in superior performance 

for medical caption generation. 

The Vision Transformer (ViT) architecture 

within BLIP performs better than the 

convolutional neural network (CNN)-based 

models such as LXMERT, thus making it 

suitable for vast and varied medical imaging 

datasets due to its better scalability and 

interpretability features. Standard medical 

terminology maintenance is possible through 

BLIP integration with the Unified Medical 

Language System (UMLS). BLIP represents an 

ideal solution for diagnostic efficiency 

improvement and radiologist decision support 

based on its advanced capabilities and detailed 

image description processing through enhanced 

cross-attention mechanisms. 

3.4 BLIP Model 

In image captioning, the BLIP 

(Bootstrapping Language-Image Pre-training) 

model is also created to be a transformer-based 

encoder-decoder model. For this purpose, we 

utilize the BLIP model and processor, and the 
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BLIP model used in this study is 

“Salesforce/blip-image-captioning-base.” The 

BLIP model comprises an image encoder and a 

text decoder which have been connected 

through a cross-attention layer to facilitate the 

two for interoperation and understanding of both 

image and textual inputs. 

Image Encoder: The input images are fed 

through the image encoder, where the 

convolutional layers and self-attention layers 

extract further abstract visual features. The 

encoder employed in this study is a Vision 

Transformer (ViT) where the image is first 

divided into patches, then linearly embedded 

and processed through transformer layers. Let X 

∈ RH×W×C be defined to be an input image 

whose dimensions are represented by H, W, and 

C being the height, width and the number of 

channels, respectively. The image is then split 

into patches of size P × P, which produces a 

sequence of flattened patches Xp ∈ RN×(P²·C) 

where N = H·W/P², H and W are the height and 

width of the image respectively, and C is the 

Each patch is linearly projected and encoded as  

𝑍0 =  [𝑋𝑝
1𝐸; 𝑋𝑃

2𝐸; … ; 𝑋𝑃
𝑁𝐸] + Epos,              (1) 

Where E represents the embedding matrix and 

Epos denotes the positional embeddings. 

Text Decoder: The text decoder is an RNN 

transformer that generates captions conditioned 

on two components, previously produced words 

and the output of the image encoder. A cross-

attention mechanism is used in the decoder to 

focus in on the image features and, in parallel, 

decode the textual components to capture the 

context. By y<t, it is meant the sequence of 

tokens produced up to the previous time step t. 

The decoder computes the probability of the 

next token given the image features Z and 

previous tokens: 

P (𝑦𝑡|𝑦 < 𝑡, 𝑍) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑊𝑜ℎ𝑡),               (2) 

Where  𝑊𝑜is the output projection matrix, and 

ℎ𝑡  is the hidden state computed by the 

transformer layer for time step t. 

An RNN transformer structure powers the 

text decoder because it processes sequences 

quickly while maintaining word context 

throughout the generation process. The model 

shows excellent performance for medical image 

captioning because it considers word sequences 

for generating precise descriptions. Through its 

combination of recurrent neural networks 

(RNNs) alongside transformer-based self-

attention operations, the decoder maintains 

control over distant dependencies within caption 

sequences because it receives information from 

earlier textual outputs and visual image encoder 

features. The design choice integrates sequential 

language generation capabilities with 

transformer-based parallel attention because it 

enables the system to produce detailed 

contextually relevant medical text. 

Cross-Attention Mechanism: The cross-

attention layer in the decoder enables interaction 

between image and text features by computing 

attention scores between the encoded image 

features Z and the current state of the text 

sequence. The attention scores are calculated as: 

Attention (Q,K,V) = Softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉,             (3) 

where Q, K, and V are the query, key, and value 

matrices derived from the image features and 

text embeddings, and d is the dimensionality of 

the key vectors. The cross-attention allows the 

model to align image regions with 

corresponding textual descriptions, improving 

the relevance and accuracy of generated 

captions. 

Training Procedure: We define the training 

objective as a conditional generation task. Given 

an input image and its corresponding caption, 

the model is trained to minimize the negative 

log-likelihood of the caption sequence. Let Y = 

{y1, y2, . . . , yT } be the caption sequence with 

length T. The loss function is defined as: 

L = -∑ log 𝑝(𝑦𝑡|𝑦 < 𝑡, 𝑍)𝑇
𝑡=1 ,          (4) 

Where p(𝑦𝑡 |y<t, Z) is the probability of 

generating token y_t given the previous tokens 

and the encoded image features. This training 

procedure enables the model to learn an 

effective mapping from images to text. 

Hyperparameters and Model Configuration: 

The proposed BLIP model’s architecture has an 

encoder and decoder structure called 

transformer, with a hidden size of 768, 12 
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attention heads, and includes 12 layers. The 

model is trained with the help of the AdamW 

optimizer with a learning rate of 5 × 10−5. 

Next, we train the model for 25 epochs with 

batch size 4, and using a custom ninordertopad. 

By utilizing this type of architecture and 

training, the BLIP model can generate captions 

that are word perfect because it integrates visual 

and textual inputs and will prove useful in the 

medical image captioning task. 

Table 3 outlines the key parameters and 

corresponding values used for configuring the 

BLIP model in this study. This parameter 

summary provides insight into the model setup 

and training environment. 

Table 3 : Model Parameters and Values for the BLIP Model. 

Parameter Value 

Hidden Size 768 

Number of Attention Heads 12 

Number of Layers (Encoder and Decoder) 12 

Patch Size 16 × 16 
Embedding Dimension 768 

Optimizer AdamW 

Learning Rate 5 × 10−5 
Batch Size 4 

Number of Epochs 25 

Image Input Size 256 × 256 

BLIP serves image captioning functions 

across various domains, but medical 

professionals optimized it for medical images 

through specialization for medical datasets 

along with their detailed interpretation needs. 

Medical images differ from typical image 

captioning use cases because they contain 

highly specialized domain content including the 

appearance of anatomical features together with 

pathological conditions and procedural 

elements. This model applies the Vision 

Transformer (ViT) encoder because its design 

enables precise analysis of image patches for 

detecting faint visual cues. This technology 

delivers significant advantages to medical 

diagnosis due to the fact that diagnostic 

information rests in minimal differences 

between different tissue features. Medical-

specific vocabulary along with UMLS concept 

embeddings have been added to the text decoder 

of this model, making it generate captions that 

follow medical terminology standards. The 

specific training data of BLIP consisting of X-

rays and CT scans and MRIs and detailed 

medical captions enables it to process healthcare 

imagery most effectively. The specialized 

training has empowered the model to generate 

precise clinical descriptions of images that 

supply meaningful diagnostic information, 

which facilitates better medical choices. 

3.5 Explainable AI 

The adoption of Explainable Artificial 

Intelligence systems depends heavily on clinical 

acceptance because hospitals require 

transparent and trustworthy methods in their 

operational infrastructure. The study adopted 

attention heatmaps as the prime visualization 

method to show which image parts influenced 

the model's predictive behavior. Inference 

brought forward heatmaps that got displayed 

together with original medical images to reveal 

which parts primarily affected the caption 

production. The approach let us confirm that the 

model analyzed key pathological indicators 

while avoiding unnecessary image components. 

The analysis of input-feature to output-caption 

relationships employed post-hoc explanation 

tools which incorporated the SHAP (SHapley 

Additive exPlanations) and LIME (Local 

Interpretable Model-Agnostic Explanations) 

algorithms. Application of these techniques 

revealed what elements within images and text 

proved most significant for determining the end 

result. The evaluation procedure helped 

recognize possible bias during model decisions 
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and made possible adjustments to training for 

better conformance with clinical goals. 

The implemented XAI methods boosted our 

model's interpretability along with creating an 

organized approach for doctors to validate and 

comprehend the AI-produced results. Our 

research incorporated XAI methods to create 

transparent, understandable and verifiable 

predictions from the model, which led to 

increased clinical model trust. 

3.6 Evaluation metrics 

The evaluation of the generated captions is 

conducted using three widely recognized 

metrics in natural language processing and 

image captioning: BLEU, METEOR, and 

ROUGE. All these and the following metrics 

evaluate the quality of the generated captions 

with respect to the reference captions from the 

dataset. 

BLEU (Bilingual Evaluation Understudy): 

The BLEU score is employed to rate the degree 

of match reflected by n-gram overlapping 

between the generated captions and the standard 

captions. It quantifies the extent that the text 

generated resembles the reference text based on 

sequences of tokens, which determines the 

precision of the words generated as compared to 

the reference text. In our evaluation, we 

calculate BLEU scores for various n-gram 

levels: The BLEU-1, BLEU-2, BLEU-3 and 

BLEU-4 give the count of 1-gram, 2-gram, 3-

gram and 4-gram overlap respectively. The 

BLEU score is calculated as follows: 

BLEU = exp (min (1- 
𝑙𝑒𝑛𝑟𝑒𝑓

𝑙𝑒𝑛𝑔𝑒𝑛
 ,0))  ∏ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑛

𝑁
𝑛=1     (5) 

Where 𝑙𝑒𝑛𝑟𝑒𝑓  and 𝑙𝑒𝑛𝑔𝑒𝑛 _gen are the lengths of 

the reference and generated captions, 

respectively, and precisionn represents the n-

gram precision. The evaluation of the generated 

captions is conducted using three widely 

recognized metrics in natural language 

processing and image captioning: BLEU, 

METEOR, and ROUGE. rank assignment 1 

focuses on how similar the generated captions 

are to the reference captions of the dataset, while 

rank assignment 2 focuses on captions similarity 

and rank assignment 3 measures how far away 

the generated captions are from the best 

matched reference captions. 

METEOR (Metric for Evaluation of 

Translation with Explicit ORdering): The 

METEOR score determines the similarity of the 

captions computed as the number of synonyms, 

stemmed words or matching literal words in the 

automatically generated text relative to those in 

the reference text were found. For the generation 

of the captions, there is a need to ensure that the 

evaluation gives more comprehensive results 

rather than the precision offered by BLEU; 

METEOR does this since it also works within 

the realm of recall. METEOR is ideal for 

scoring medical captions because it considers 

the possibility of finding variations of similar 

meaning in medical parlance. The METEOR 

score therefore ranges between zero and one and 

is computed from the harmonic mean of 

precision and recall and with an encouraging 

factor equal to the length of the phrases in the 

reference text. 

ROUGE (Recall-Oriented Understudy for 

Gisting Evaluation): Based on the recall and by 

computing the overlapping of n-grams, 

sequences and word pairs between the generated 

captions and the reference captions, ROUGE is 

calculated. In this study, we used the ROUGEL 

as the common regard, which is established on 

the longest common subsequence (LCS) with 

the generated as well as the reference text. The 

results are given by ROUGE-L, which gives an 

understanding of how comprehensively the 

generated captions can be said to have addressed 

the reference captions. It assesses sequence-

level similarity rather than word matching. The 

evaluation procedure addresses the comparison 

of a list of captions produced with the test data 

to the captions list from within the dataset. The 

BLEU, METEOR, and ROUGE metrics are 

given for each caption pair, and the means of 

these are used as measures of the overall 

performance of the model. Overall, higher 

scores in these indicators reveal that there is a 

positive correlation between the generated 

captions and the reference captions through the 

BLIP model when captioning radiology images. 
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4. Experimental results 

In this section we describe the results 

provided by the evaluation of generated captions 

based on BLEU, METEOR, and ROUGE 

scores. The mean of BLEU-1 read is 0.7959, 

which confirms a high amount of single words’ 

repetition in the generated and reference 

captions. This score is calculated based on the 

model’s rendition of individual word accuracy, 

implying that the garnered captions comprise 

many of the important key words of the referent 

descriptions. This strong unigram precision is 

also preferable in medical image captioning 

because precise terminology is crucial to 

representation. At the n-gram level greater than 

2, the average BLEU-2, BLEU-3, and BLEU-4 

are 0.7714, 0.7486, and 0.7300 respectively. As 

highlighted before, these results depict a 

diminishing score with the increase in the size 

of the n-gram, a common occurrence when 

dealing with natural language generation related 

issues. The high BLEU-2 score can confirm that 

the model works fine with bi-grams and the 

structure and the flow between two words nicely 

match the choices of reference captions. The 

BLEU-3 and BLEU-4 scores, although lower to 

the BLEU-1 and BLEU-2 scores, also remain 

significantly high, implying that the proposed 

model effectively learned to incorporate 

trigrams and four-grams, and performs the task 

of ensuring the coherent and logically 

consecutive arrangement of sentences – albeit 

slightly lesser proficiently over longer phrases – 

as it does for the individual sentences. This 

sequential accuracy is significant in the medical 

image captioning since it enables a proper order 

of the generated captions, with terms and their 

relation to one another understood clinically. 

The METEOR score of 0.6101 also aversed the 

method of building the model and the scale of 

the accuracy of the precision and recall 

measures. In contrast, METEOR does take into 

consideration recall as it measures how 

effectively the generated captions overlap the 

reference captions are. The fairly elevated 

METEOR score means that the model chooses 

not only the most appropriate words but also 

covers all the semantic fields specified in the 

reference captions. This balanced performance 

is especially important in medical applications 

because the method suggests that the model 

does not compromise accuracy for 

generalization and vice versa: it captures the 

semantic context of the descriptions, including 

all the possible synonyms and variations of the 

wording. Once more, a score of 0.8405 is 

relatively high in the case of longer sequences, 

confirming the proximity of the generated and 

reference captions according to the ROUGE 

metric. ROUGE encompasses the length of the 

actual overlap, which is demonstrated by the 

ROUGE-L specific to this metric; the degree in 

which the captions generated emulate the 

structures and sequences of the reference 

captions are encompassed in the measurement. 

These high ROUGE scores indicate that the 

generated captions preserve a good syntactic 

and semantic cohesion and commute the clinical 

information as was intended with little variation 

with the reference descriptions. Collectively, 

these findings show that BLIP model trained in 

this research yields satisfactory results to 

diverse evaluation criteria; when tested with 

METEOR, ROUGE, and BLEU, good 

numerical values are obtained when generating 

medical image captions. The learner model has 

been able to accomplish these scores – these 

scores indicates that the model is suitable for the 

task of medical image captioning as it is capable 

of addressing the precision of terms, 

sequencing, and overall coverage of clinical 

data. This performance also implies the 

usefulness of the model in clinical situations 

with the possibility of generating informative 

and relevant image captions for radiology use. 

Table 4 presents the experimental results of the 

model evaluated using standard captioning 

metric. The average scores reflect the model’s 

effectiveness in generating coherent and 

semantically accurate medical image captions, 

demonstrating strong performance across all 

evaluation metrics. 

Table 4: Experimental results of the model on 

BLEU, METEOR, and ROUGE Metrics 
Metric Average Score 

BLEU-1 0.7959 
BLEU-2 0.7714 
BLEU-3 0.7486 
BLEU-4 0.7300 
METEOR 0.6101 
ROUGE 0.8405 
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Figure 3. Generated and real captions describe periapical radiograph after autogenous socket grafting procedure 

accurately. 

The model shows capability to produce 

accurate medical descriptions in Figure 3 

through its handling of periapical radiograph 

images which serve to check root structures and 

adjacent bone tissue after autobt socket grafting 

treatment. The generated caption mirrors the 

reference caption when stating "periapical 

radiograph taken soon after autobt socket 

grafting." The model demonstrates excellent 

ability to detect crucial anatomical features 

("periapical radiograph") together with detailed 

procedural terminology ("autobt socket 

grafting"), which make both components 

necessary for postoperative evaluations. 

Standardized medical terminology found in 

diagnostic reports achieves strong replication by 

the model, thus reducing the ambiguity in these 

reports. The slight difference between "soon 

after" and "immediately after" temporal 

expressions demonstrates a weakness, because 

although the model successfully understands 

procedural sequences, stakeholder needs further 

refinement to replicate exact clinical timing 

precision. A radiograph exclusively assays the 

apical part of the tooth to enable thorough 

assessment of both bone density and graft 

integration for surgical evaluation. The model 

accurately matches the reference caption, which 

indicates its capability to link visual elements 

such as bone texture along with graft placement 

with clinical action terms. The approach 

demonstrates efficient workflow management 

through a system that requires domain-specific 

refinement to handle detailed temporal and 

quantitative descriptions in future versions. 

 

Figure 4. Model accurately identifies right subclavian CVC placement in optimal position on X-ray. 

Figure 4 shows an X-ray of the subclavian 

region where captions confirm that a right 

subclavian CVC maintains an optimal position. 

The exact correspondence between model-

produced captions and reference text proves that 

the model effectively recognizes relevant 
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clinical vocabulary and correctly detects 

medical device placement. The image 

concentrates on the right subclavian area 

because it shows a central venous catheter 

(CVC) placement for essential medical 

procedures in fluid delivery and medication 

treatment and hemodynamic observation 

settings. The correct placement for catheters, 

which meets clinical requirements, is called 

optimal position, because improper positioning 

might generate complications including 

thrombosis and vascular injury along with 

malposition. The model demonstrates aptness 

for functionally assisting radiological 

interpretations and clinical strategic decisions 

by producing accurate references. The model 

demonstrates the ability to detect relevant 

anatomical areas and medical equipment which 

could improve operational productivity in active 

healthcare settings, thereby reducing workloads 

for radiologists and medical staff. The 

verification procedure evaluated the model's 

ability through specific case analysis, but a 

thorough examination must assess its 

performance when encountering misplacements 

and anatomical changes or catheter kinking and 

migration conditions. The evaluation of this 

model requires identifying its reliable usage 

boundaries because its ability to detect minor 

deviations from typical catheter placements 

remains unclear. Future research needs to 

evaluate the detection capacity of this model to 

identify inferior catheter placements and 

possible complications before considering its 

implementation in clinical diagnosis.  

 

Figure 1.MRI image caption highlights small residual cavity with debris post-abscess treatment. 

The brain data shows a sagittal T2-weighted 

turbo spin-echo (TSE) MRI scan with model-

generated text along with human-produced 

captions in Figure 5. Head Medical 

professionals used a sagittal T2-weighted TSE 

MRI image to show one month after medical 

intervention revealed a tiny abscess remnant 

shaped by debris material. The reference caption 

matches the model-generated text, yet it uses 

different word structures. "Sagittal T2-weighted 

TSE MRI after 1 month of medical treatment: 

small residual cavity containing some debris at 

the site of the abscess." These captions show 

strong similarity, thus proving the model has 

mastered how to translate essential radiological 

terms with precise accuracy. The model 

demonstrates correct interpretation abilities 

regarding "T2-weighted" and accurately uses 

these critical diagnostic terms within generated 

descriptive frameworks, thus validating its 

ability to process medical imaging features. 

A sagittal brain image from MRI shows a 

select section within the region of interest (ROI) 

that has been pointed out. A specific marking 

system guides professional medical 

practitioners toward areas that might experience 

persistent effects from the abscess. The model 

successfully aligns its semantic descriptions 

with expert human annotator descriptions, thus 

proving its capability to assist radiologists in 

reporting and documentation tasks. A detailed 

assessment spanning numerous imaging 

scenarios should assess the model's performance 

behavior, especially when observing anatomical 

differences or multiple medical conditions and 

indistinct imaging patterns. These research 
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findings prove that the model produces 

clinically significant descriptions for various 

imaging techniques. Such observational success 

indicates potential use of this system as an 

important assisting tool for precise imaging 

report documentation in medical facilities. 

Table 5 :Comparison of proposed model with related work 

Method Datasets B1 B2 B3 B4 M R 

[17] IU X-ray 0.50 0.38 0.32 0.28 0.28 0.44 

[18] Mimic CXR 0.68 0.61 0.54 0.48 - - 

[19] IU X-ray 0.88 0.87 0.87 0.86 - 0.93 

[20] Mimic CXR 0.36 0.24 0.16 0.093 0.32 0.3 

[21] BCD 2018 0.47 0.36 0.27 0.21 0.31 0.46 

[22] ChexPert 0.65 0.50 0.41 0.30 0.42 0.50 

[23] IU X-ray 0.44 0.31 0.22 0.15 - 0.37 

[24] IU X-ray 0.39 0.27 0.19 0.14 0.18 0.33 

[25] Own created 0.56 0.51 0.50 0.49 0.55 0.58 

[26] Stare 0.87 0.66 0.52 0.44 - - 

[27] Own created 0.27 - - 0.42 - - 

Proposed 

Model 

Image set of 

Radiology 
0.7959 0.7714 0.7486 0.7300 0.6101 0.8405 

The proposed model underwent comparison 

evaluation against established medical image 

captioning techniques by using BLEU, 

METEOR and ROUGE metrics, as shown in 

Table 5. The proposed method achieves better 

results in various evaluation metrics, but 

researchers need to acknowledge that the 

evaluation was conducted through different 

datasets that have distinct characteristics. The 

performance metrics on one dataset do not 

necessarily reveal global superiority of a model 

because dataset characteristics such as content 

distribution and annotation standards heavily 

affect model output quality. Different methods 

face significant barriers when compared due to 

dataset structures and annotation styles, which 

naturally vary between each other. Multiple 

cited works use IU X-ray as well as MIMIC-

CXR together with CheXpert and BCD 2018 

datasets that present different levels of image 

modality and dataset size and textual annotation 

types. The structured reports of IU X-ray make 

it hard to compare with the unstructured text 

descriptions found in MIMIC-CXR. The 

evaluation scores of the CheXpert and BCD 

2018 datasets are affected by annotation 

variations that occur in length and complexity. 

The wide range of image types in these tests 

brings additional difficulties to the comparison 

process. The data content across different 

datasets ranges from exclusive chest X-ray 

images to CT scans, but also includes MRIs 

together with fundus imaging. Different 

imaging procedures show different levels of 

imaging detail, so this distinction plays an 

essential role because it determines how 

effective image captioning models become. 

Exceptional BLEU METEOR ROUGE 

evaluation results likely stem from the training 

procedure which worked on a radiology dataset 

having different diagnostic modalities. The 

model produces specified performance rates on 

present testing datasets; however, it fails to 

maintain parallel results when participating in 

datasets incorporating various imaging 

approaches or medical circumstances. 

The proposed model retains high semantic 

and lexical resemblance to reference captions 

according to B1 = 0.7959, B2 = 0.7714, B3 = 

0.7486 and B4 = 0.7300 BLEU scores. The 

model exhibits successful performance in 

keeping medical terms intact along with 

coherent language sequences at all n-gram 

levels because of its stable BLEU score ratings. 

The METEOR score of 0.6101 confirms these 

findings because it evaluates both semantic 

relationships and necessary clinical terminology 

detection abilities needed to generate clinical 

captions. When evaluated through ROUGE 

scoring, the developed model maintained a 
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better medical description structure and 

production sequence, which exceeded reported 

previous work results to a score of 0.8405. 

The implementation of Unified Medical 

Language System (UMLS) terminology within 

the dataset resulted in better results for the 

proposed model. This research utilizes UMLS 

Concept Unique Identifiers (CUIs) for 

annotation instead of free-text methods because 

CUIs establish standardized medical vocabulary 

in caption outputs. The structured language 

system enables doctors to use standardized 

phrases, which decreases the number of 

ambiguous medical reports. The model's 

reliability for medical practitioners increases 

and its interpretability strengthens because the 

generated captions are linked to official clinical 

terminologies. 

Multiple external datasets including 

MIMIC-CXR, IU X-ray and CheXpert need to 

validate the proposed model to check its 

consistent accuracy and coherence across 

diverse clinical settings. The complexity of 

dataset comparison gets worse because of non-

standardized structure formats, which indicates 

the requirement of benchmark datasets that unite 

annotation practices with unified medical 

nomenclature and predefined imaging 

protocols. Future evaluations must include 

statistical significance analysis by employing 

confidence intervals with variance metrics to 

measure the reliability of reported BLEU, 

METEOR, and ROUGE scores. 

Outside of quantitative validation, the true 

usability of AI-generated captions has to be 

evaluated in user studies with radiologists to 

evaluate its effect on real-world radiology 

workflows, diagnostics efficiency, and 

workload reduction to assess or approve the 

deployability of the model into common 

practice. Solving these issues with cross-dataset 

benchmarking, statistical validation, and 

clinical evaluations can lead to AI-driven 

medical image captioning models that would be 

robust, interpretable, and ideally integrable into 

real-world healthcare systems. 

Statistical methods were introduced to 

validate BLEU, METEOR, and ROUGE scores 

in automated medical image captioning because 

we wanted to make the result evaluation process 

stronger. Our 95 % confidence interval 

calculations verified the stable performance 

reliability of the model across each metric. The 

statistical evaluation showed BLEU-1 at 0.7959 

± 0.02, with BLEU-2 at 0.7714 ± 0.02 and 

BLEU-3 at 0.7486 ±0.03, while BLEU-4 stood 

at 0.7300 ± 0.03 and METEOR equaled 0.6101 

± 0.025 and ROUGE reached 0.8405 ± 0.02. 

The BLIP model achieved statistical 

significance (p < 0.05) according to p-value 

analysis, thus validating its effectiveness for 

medical image captioning in precise clinical 

scenarios. 

5. Conclusion 

The researchers developed an advanced 

process to create targeted clinical captions 

through BLIP since they validated the method 

across various radiology scans including X-rays 

together with CT and MRI images. BLEU, 

METEOR and ROUGE scoring methods 

showed that the model produced captions which 

matched established expert references by using 

medical terminology and diagnostic 

information. The evaluated data demonstrates 

that artificial intelligence shows promise for 

radiology practice through its ability to decrease 

staff workload and enhance operational 

effectiveness. 

This revolutionary system requires several 

operational obstacles to be solved before it can 

be implemented at real clinical sites. Primarily, 

regulatory hurdles and the need for thorough 

clinical validation pose significant barriers. 

Medical AI tool deployments require these 

challenges to meet health standards along with 

both clinical safety standards and regulatory 

compliance requirements. The performance of 

the model would improve by expanding training 

data to cover multiple imaging methods and 

healthcare scenarios, which would reduce 

biased data sets and broaden its clinical 

implementation capabilities. 

Explainable AI methods SHAP and LIME 

play a vital role in clinician trust building by 

making the model decision-making process 

more understandable. The implementation of 

feature attribution methods along with attention 

heatmaps provides healthcare staff with visual 
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tools to see which parts of an image drive the 

AI's caption generation while helping ensure the 

confirmation of expert evaluations. Further real-

world testing processes must occur to ensure the 

model delivers executable and dependable 

medical output whilst overcoming 

experimental-clinical implementation 

differences. 

Healthcare infrastructures need complete 

integration of AICT along with regulatory 

compliance approval and protective data 

solutions as well as workflow compatibility. 

Healthcare professionals need to partner with 

the development team to conduct extensive 

usability tests which enable feedback to 

optimize the AI tool according to clinical 

operational standards and regulatory 

requirements. 

Additional research should concentrate on 

building the model to perform advanced 

diagnostic functions that include disease 

classification identification and abnormality 

identification with disease progression analysis. 

This innovation aims to create a sophisticated 

AI-driven radiology platform which combines 

automatic diagnostic excellence with hospital 

system integration, thus enabling mainstream 

medical imaging adoption through significant 

operational modifications. 
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