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The current study highlights the importance of accurate temperature prediction in Iraq, 

a country facing economic challenges due to its hot, arid climate and increasing climate 

change effects. Conventional forecasting methods, such as statistical and shallow 

machine learning models, struggle to address the complex time-dependent 

characteristics of meteorological data. The present study proposes to improve the 

temperature forecasting of the three large cities in Iraq, i.e., Dohuk, Erbil, and Mosul, 

using the deep learning models that can learn both short- and seasonal weather trends. 

A meteorological dataset of 24 years (2000-2024) was created with five major 

characteristics, namely, temperature, wind speed, relative humidity, total precipitation, 

and surface pressure. The models to be used in the deep learning model were three, 

namely (Long Short-term memory (LSTM), Gated Recurrent Unit (GRU), and Artificial 

Neural Network (ANN). The metrics of performance were Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), and R². The LSTM 

model performed the best in all the cities with RMSE values of 2.544, 2.366, and 2.323 

and R² scores of 0.941, 0.948, and 0.952 in Dohuk, Erbil, and Mosul, respectively. The 

study confirms that LSTM is the most effective in modeling complex temporal 

dependencies in climatic time series, making it a significant contribution to 

understanding deep learning's application in weather forecasting in the Middle East. It 

suggests integrating AI-driven technology into the national meteorological system for 

climate-resistant decision-making in agricultural, water resource management, and 

urban development sectors. 
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1. Introduction 

Earth's vulnerability to climate change 

exists primarily in the Middle East because this 

region experiences both high temperatures and 

low precipitation levels. Several nearby 

countries, such as Turkey, provide scientific 

evidence that supports this claim alongside 

Iran, Iraq, Kuwait, Saudi Arabia, Qatar, and 

Syria [1]. Climate change has a direct impact 

on the environmental and human systems, 

which results in heat stress as well as storms, 
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heavy rainfall, inland flooding, droughts, water 

shortages, agriculture and food security 

disruptions [2-4]. Greenhouse gas emissions 

keep rising because of economic development 

and population expansion, thus causing these 

climate effects. The historical data of centuries 

to millennia indicate that the current level of 

carbon dioxide (CO2), of methane (CH4), and 

of nitrous oxide (N2O) in the atmosphere is the 

highest [5]. The other anthropogenic sources 

combined with GHGs cause numerous 

ambiguous alterations in climate regimes [6]. 

https://djes.info/index.php/djes
https://djes.info/index.php/djes/article/view/1832
https://creativecommons.org/licenses/by/4.0/


Mustafa S. Mustafa, Basma A.M. Al-Jawadi/ Diyala Journal of Engineering Sciences Vol (18) No 3, 2025: 225-246 

226 

 

Deep learning used durably is currently an 

effective tool to address challenging issues 

across various industrial domains. Deep 

learning techniques revolutionized the field of 

signal processing and, as a result, identifying a 

Suitable Signal Processing Technique for MI 

EEG Data proposed the use of time-frequency 

representations as efficient algorithms to 

analyze brain signals [7]. The article titled Dual 

Optimization of Deep CNN in the classification 

of motor imagery EEG tasks showed that 

convolutional neural networks with genetic 

algorithm optimization produce high-

performance results in classifying motor 

imagery EEG tasks. Such recent developments 

demonstrate the inter-domain performance of 

deep learning [8]. 

In its specific domain, deep learning has 

shown itself to be outstanding in weather and 

climate prediction systems. Deep learning 

studies have demonstrated that the current 

approaches will provide better quality 

temperature predictions at hourly scales 

compared to conventional forecasting methods. 

Graph Cast serves as an example of predictive 

modeling that produces reliable weather 

forecasts covering a ten-day period while 

outperforming industry normative weather 

forecasting systems. Both convolutional neural 

networks (CNNs) combined with recurrent 

systems, including (LSTM) and (GRU) have 

succeeded in detecting spatial along with 

temporal characteristics within meteorological 

datasets. Several combined methodological 

approaches demonstrate superior outcomes in 

climate variable prediction across temperature 

measurements, precipitation, and wind speed 

analysis [9,10]. 

Global climate models (GCMs) stand as the 

leading method that scientists use to assess 

climate risks [11]. GCMs are computing 

techniques that obtain solutions to equations of 

balance of energy (the first law of 

thermodynamics) and Newton’s equations of 

motion and the principle of continuity of mass 

along with ideal gas equations of vapor masses. 

The equations operate throughout the 

atmospheric layers and serve the grid cells of 

the atmosphere before performing calculations 

during predefined time steps. These equations 

operate on different atmospheric layers while 

the atmosphere is divided into grid cells and the 

mathematical operations occur at regular time 

intervals [12]. The use of GCMs allows 

researchers to judge upcoming climate shift 

identification through examination of present-

day climatology versus forecasted climatology. 

These operational models do not deliver data at 

specific locations since their spatial resolution 

ranges from 100 to 300 km, and their output 

results demonstrate biased properties [13]. 

GCMs demonstrate limited capability when it 

comes to explaining local hydrological 

processes and climatic mechanisms [14]. 

Downscaling approaches enhance GCM-

produced outputs and convert them into high-

resolution spatial details [15]. Regional climate 

models (RCMs) form part of dynamical 

downscaling, but statistical downscaling 

consists of the Long Ashton Research Station 

Weather Generator (LARS WG) together with 

the Statistical DownScaling Model (SDSM) 

along with alternative models [16]. The LARS-

WG originates from stochastic weather 

generator development [17], but SDSM utilizes 

regression models and SDSM functions 

through a regression-based approach [18]. 

The Fifth Assessment Report by the IPCC 

confirms that CO2 emission levels serve as the 

principal cause of global temperature increases 

during the twenty-first century. The 

constructed models use five future GHG 

emission pathways, including RCP2.6 for strict 

mitigation measures, RCP4.5 and RCP6.0 for 

intermediate cases, with RCP8.5 representing 

high-emission scenarios. Scientific projections 

indicate that temperature will elevate between 

0.3°C and 4.8°C during this century, but the 

precipitation shifts will show various results in 

these scenarios [3, 19]. The observations 

parallel findings from European [20], North 

American [21], African [22], and Asian [23] 

scientific investigations. Science models show 

that Turkey faces both temperature rise and 

reduction in rainfall over the 21st century [24], 

while Iran experiences heightened 

temperatures but irregular precipitation trends 

[25]. 
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Climate change has had the most severe 

impact on Iraq compared to all other nations in 

the Middle East. Multiple climate zones within 

the region act as a severe threat to the country's 

vulnerability [26]. Iraq ranks as the fifth-most 

affected country by climate change due to its 

limited vegetation areas combined with rising 

carbon dioxide levels from its crude oil 

extraction activities [27]. Methane emissions 

and other greenhouse gases continue to rise in 

Iraq, and the country stands among the top five 

nations performing petroleum sector flaring 

activities vital to its economy [28–31]. 

Research conducted in southern Iraq shows that 

temperature levels will rise throughout the next 

century [32]; at the same time, civil 

precipitation across northern and eastern areas 

is projected to reduce [33, 34]. The water 

shortage in Iraq intensifies because adjacent 

states developed dams on the Tigris and 

Euphrates rivers. The Southeastern Anatolia 

Project framework has led Turkey to construct 

22 dams according to report [35], while Syria 

implemented three dams according to report 

[36] on the Euphrates. Iran has changed the 

flow patterns of water from rivers that used to 

reach Iraq [37]. The water infrastructure 

development and rerouting activities have 

decreased river water levels while creating poor 

water conditions and causing severe land 

degradation and desertification together with 

climate alterations [38, 39]. Time-worn 

farming practices plus substandard water 

management along with flood irrigation worsen 

the situation because the agricultural sector 

consumes 95% of available freshwater [40]. 

Accurate temperature forecasting is critical 

for Iraq’s adaptation strategies in agriculture, 

water resources, and urban planning. However, 

traditional forecasting methods such as Support 

Vector Machines and Decision Trees often fall 

short due to their inability to model non-linear 

and sequential dependencies in climate data. 

The complex and diverse climatic patterns 

across Iraq call for more advanced and 

adaptable modeling techniques. 

This research responds to that need by 

exploring the effectiveness of deep learning 

models in forecasting daily temperatures in 

three major Iraqi cities: Dohuk, Erbil, and 

Mosul. These cities were chosen due to their 

diverse climate profiles and strategic 

importance. The study evaluates the 

performance of LSTM, GRU, and ANN models 

on a 24-year meteorological dataset 

incorporating five essential features: 

temperature, wind speed, relative humidity, 

total precipitation, and surface pressure. 

Section 2 presents the related works, 

Section 3 presents the dataset and 

preprocessing pipeline, Section 4 details 

experimental results, Section 5 offers a 

discussion of findings, Section 6 presents the 

limitations of study, and Section 7 concludes 

the paper with final insights and future research 

directions. 

To address the complex temperature 

forecasting challenges in Iraq, this research 

makes the following key contributions: 

1- Geographic and Temporal Dataset 

Uniqueness: The study introduces a uniquely 

comprehensive dataset encompassing 24 years 

of daily meteorological data from three 

geographically diverse Iraqi cities. This long-

term, city-level dataset is one of the most 

extensive for the region, enabling robust time-

series analysis. 

2- Comparative Analysis of Deep Learning 

Architectures: Three deep learning models are 

systematically compared using identical 

preprocessing and validation protocols, 

providing a fair and rigorous benchmark for 

model performance. 

3- Advanced Preprocessing and Validation 

Techniques: The methodology incorporates 

advanced preprocessing such as seasonal 

decomposition, interquartile-based outlier 

detection, and sequence generation. It also 

utilizes walk-forward cross-validation to 

preserve time-dependency in training and 

testing, enhancing model reliability. 

4- Performance Superiority of LSTM for 

Arid Climates: The LSTM model consistently 

outperformed GRU and ANN in all three cities, 

achieving the lowest error metrics (RMSE, 

MAE, MSE) and highest R² values. Its ability 
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to capture both short-term and seasonal 

patterns is particularly valuable for climate 

forecasting in arid and semi-arid regions. 

5- Addressing a Regional Research Gap: 

This study contributes to the limited body of 

literature on deep learning-based temperature 

forecasting in the Middle East, specifically in 

Iraq, which remains underrepresented in 

climate modeling research. The findings offer 

insights for regional policy development and 

adaptation planning. 

2. Related Works 

Numerous researchers have employed data 

mining techniques for meteorological 

forecasting utilizing characteristics such as 

wind speed, precipitation, and air temperature. 

These metrics have been forecasted utilizing 

fundamental linear data mining and nonlinear 

data mining methodologies. In meteorology, 

researchers have employed several data mining 

approaches to enhance forecasting accuracy. 

In [41], the authors examined data mining 

methodologies for predicting rainfall, 

maximum temperature, wind velocity, and 

evaporation rates. They employed Decision 

Tree and Artificial Neural Network (ANN) 

based on geophysical atmospheric 

characteristics. The data illustrate the 

parameters that characterized weather patterns 

over the research period. Similarly, the authors 

in [42] employed Support Vector Machine 

(SVM), Naïve Bayes (NB), and Artificial 

Neural Networks (ANN) to forecast rainfall in 

Sulaymaniyah, Kurdistan, Iraq. Among these 

algorithms, SVM provided the most promising 

opportunity for precise rainfall forecasting. 

The study [43] analyzed the efficacy of 

various algorithms to predict meteorological 

parameters, including wind, humidity, 

temperature, and precipitation. The study 

demonstrated that the employed machine 

learning techniques, including regression 

algorithms, artificial neural networks, 

clustering methods, and decision trees, were 

suitable for weather prediction; among these, k-

means clustering and decision trees were 

considered the most acceptable. Several prior 

studies have focused on the application of data 

mining techniques for predicting temperature 

and humidity. The techniques predominantly 

employed in these investigations are Support 

Vector Machine, Artificial Neural Network, 

Decision Tree, Naïve Bayes, and K-Nearest 

Neighbors with clustering. The objective of 

employing a supervised machine learning 

strategy is to identify the optimal methodology 

and the features that improve prediction 

accuracy. 

Deep learning technology has produced 

substantial changes to temperature forecasting 

procedures during the last few years. Through 

their combination of LSTM with transductive 

learning, Z. Karevan and J. A. K. Suykens [44] 

achieved improved temperature 1-6 days ahead 

forecasting accuracy, but this method required 

substantial computational capacity. The 

research team of Q. Guo et al. [45] conducted 

an extensive comparison between deep 

learning models in climate prediction and 

established the superiority of hybrid GRU-

CNN and LSTM-CNN models for predicting 

one-day-ahead air temperatures, but their 

research focused exclusively on short-term 

horizon forecasting. 

Deep learning algorithms achieve 

promising outcomes when used with 

decomposition methods. J. K. Mutinda [46] 

designed the VMD-ARIMA-GRU model to 

predict temperature series by resolving non-

stationarity in temperature data, which led to 

better results compared to individual models. 

Their solution needed time-consuming 

preprocessing, yet these operations made actual 

implementation difficult.  

The researchers of G. Camps-Valls et al. 

[47] used deep learning technologies to study 

extreme climate phenomenon but discovered 

that training datasets lack sufficient 

occurrences of such rare events. Several 

research investigations have uncovered 

essential problems affecting deep learning 

systems in temperature prediction operations. 

M. Bonavita [48] investigated machine 

learning weather forecasting model limitations, 

which showed inadequate performance, 
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especially during rapid temperature changes 

and extreme weather events.  

Although significant improvements have 

been made in using machine learning to make 

meteorological forecasts, it has been observed 

that several research gaps continue to exist, 

especially in arid and semi-arid regions. There 

exists a bias in the studies that have been 

conducted so far, focusing on temperate 

climates and ignoring others such as Iraq, 

which are highly subjected to temperature 

extremes and variability in climate. 

Additionally, most of the existing studies are 

based on limited time-series records (usually 5-

10 years), which cannot be used to characterize 

decadal climatic patterns and interannual 

variability needed to obtain reliable model 

training. The generalizability studies on how 

deep learning models, in particular, the 

recurrent models, like LSTM and GRU, fare in 

different urban settings across one country are 

also unavailable. This constrains the 

interpretation of spatial variation in the 

accuracy of predictions. Also, how 

architectural complexities like utilizing 

bidirectional layers, size variation in the size of 

the recurrent units, or multi-layers stacking, 

affect forecasting performance in the context of 

Middle Eastern climatic conditions is studied. 

The lack of standardized benchmarking studies 

that benchmark popular deep learning models 

such as LSTM, GRU, and ANN on consistent 

datasets and validation approaches within the 

context of Iraq is also another significant gap. 

In discarding these shortcomings, the current 

study performs an extensive review of deep 

learning models on daily temperature 

predictions over three big cities in Iraq Dohuk, 

Erbil, and Mosul through a 24-year data sample 

(2000-2024) that contains various 

meteorological parameters. Using robust 

validation frameworks and a model comparison 

approach, this paper presents original and 

empirical evidence on how different models 

perform, on architectural suitability, and on 

regional cross forecasting reliability in a 

climate-sensitive and poorly studied region. 

 

3. Methodology 

A focused research method links formal 

data analytics to advanced machine learning 

forecasting approaches to build a predictive 

temperature framework. In the study, 

environmental data are selected according to 

time-series best practice guidelines, which 

present significant changes in time and 

seasonal influences. Meteorological 

measurements provide the study of five 

important aspects of the atmosphere, like 

temperature (T), wind speed (WS), relative 

humidity (RH), total precipitation (TP), and 

surface pressure (SP) of the cities of Dohuk, 

Erbil, and Mosul in Iraq in a period of 24 years, 

2000-2024. Research analysts identified the 

features based on their physical meaning for the 

climate system and their statistical value to 

improve the accuracy of the forecast. The 

analysis involved exploratory data analysis 

(EDA) to identify pattern recognition factors 

and types of distributions and feature 

correlations and anomalies and then use them 

to derive time-series forecasting algorithms. 

The suitability of the deep learning models 

necessitated the need to adopt a multi-step data 

preparation process which maintained the 

integrity of data whilst also making the data 

suitable to be utilized in the deep learning 

model. In order to preserve temporal 

continuity, one-on-one gaps were filled with 

linear interpolation, and longer gaps with 

missing data were filled with seasonal 

decomposition. The identification of outliers 

utilized interquartile range methods together 

with thresholds from historical climatological 

data. MinMax normalization was applied 

exclusively to training data features for 

preventing information leakage through the 

scaling process. Through normalization the 

training process achieved a faster speed-up 

phase and prevented individual variables from 

disproportionately affecting model learning. 

Next, the dataset needed reshaping to 

sequential formats through sliding window 

processing to generate supervised learning 

input-output pairs. The data transformation 

method has retained the chronological data 

sequence to preserve causality along with 
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seasonal trends in the training and evaluation 

process. 

It used three deep learning techniques, such 

as Long Short-Term Memory (LSTM), but also 

Gated Recurrent Unit (GRU) and Artificial 

Neural Network (ANN). The layer architecture 

of both LSTM and GRU was based on a 

recurrent 128 (LSTM) and 64 (GRU) recurrent 

unit and dropout and dense layers to reduce 

overfitting. The ANN model retained a 

simplified architecture of two complete 

connection layers that used ReLU activation 

functions along with additional dropout layers 

that encourage generalization capabilities. An 

exhaustive grid search algorithm was used to 

optimize model performance and to provide an 

equal opportunity between competing models.  

As part of the research, the research team 

conducted an assessment of different learning 

rates of 0.0001 to 0.01, as well as hidden layer 

sizes of 32, 64, 128, and 256 in assessing 

varying dropout rates of 0.1 to 0.5. The number 

of repeated layers of the GRU model were 

coupled with the various activation functions in 

addition to regularization strengths and the 

various ANN specifications. Future research 

should utilize Bayesian Optimization, Tree-

Structured Parzen Estimators (TPE), and 

Hyperband to enhance efficiency in high-

dimensional search spaces, as these advanced 

optimization methods have led to optimal 

configuration selection based on validation loss 

evaluation. 

The model training process utilized the 

Adam optimizer because it offers adaptive 

capabilities for non-convex optimization and 

has shown successful results. The learning rate 

began at 0.001, but a scheduling system 

automatically decreased it when the validation 

loss stopped improving for five consecutive 

epochs. Early stopping technology brought 

training to an end when ten epochs without 

improvement occurred, thereby minimizing 

overfitting and saving computational 

processing time. All models maintained a 

continuous use of a batch size value equal to 64. 

For evaluating temporal validity through cross-

validation, the researchers used walk-forward 

instead of traditional train-test split approaches. 

The training window kept growing 

progressively through periodic testing intervals 

of twelve months that facilitated robust 

validation by covering multiple seasonal 

cycles. The evaluation used RMSE, MAE, 

MSE, and R² metrics to assess forecast 

accuracy because they measured different error 

sizes and explained variability in the dataset. 

Including MAPE in the analysis allows 

stakeholders to receive percentage-based 

metrics that enhance interpretability when 

applying agricultural and energy practices and 

policy planning. A visual overview explaining 

the complete methodology appears in Figure 1, 

beginning with data acquisition and ending 

with model implementation. 

 

Figure 1. Proposed Scheme. 
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3.1. Dataset Overview 

The dataset used in this study consists of 

meteorological data collected from three cities: 

Dohuk, Erbil, and Mosul. Each dataset includes 

five key features recorded on a daily basis, 

covering the period from the year 2000 to 2024. 

The features present in each dataset include 

wind speed (WS, in m/s), mean temperature (T, 

in °C), relative humidity (RH, in %), total 

precipitation (TP, in mm), and surface pressure 

(SP, in kPa). These attributes represent 

important weather variables that are highly 

influential in understanding the region’s 

climatic behavior. The target variable for 

prediction is temperature (T, in °C). 

The input features utilized in this study 

comprise five key meteorological variables that 

directly influence temperature patterns: Wind 

Speed (WS, measured in m/s), which affects 

heat transfer and distribution; Relative 

Humidity (RH, measured in percentage), which 

impacts the atmosphere's heat retention 

capacity; Total Precipitation (TP, measured in 

mm), which influences surface cooling through 

evaporation; Surface Pressure (SP, measured in 

kPa), which correlates with air mass 

movements and weather system changes; and 

historical Temperature values (T, measured in 

°C), which provide temporal context for 

prediction. The selection of these specific 

variables occurred due to their documented 

physical relationship with temperature 

variations while maintaining consistent 

availability through historical records. The 

prediction model aims to estimate the daily 

mean temperatures (T) found in each city as its 

main outcome. 

The datasets are uniform in form; all 

regions used the same set of features and a 

shared time dimension, which not only enabled 

comparison of the regions but also enabled the 

same modeling methods to be applied 

consistently to the datasets. This data has over 

8,918 records each day per region, which cover 

over 20 years of time series analysis and 

predictive modeling. With large enough data 

sets, such a temporal granularity captures 

seasonal trends, extreme events, and secular 

deviance. The datasets will be relatively clean 

with no missing data in the main abilities and 

will provide good base blocks in the subsequent 

steps of cleaning and model building. These are 

all significant features in the prediction of 

temperature. Understanding the interaction 

between these features, sound forecasting 

models will emerge capable of predicting 

future changes in temperature in the chosen 

regions. 

3.2. Exploratory Data Analysis 

3.2.1. Dohuk City 

The data set of Dohuk City has five 

available meteorological variables: wind speed 

(WS), mean temperature (T), relative humidity 

(RH), total precipitation (TP), and surface 

pressure (SP). The data is registered on a daily 

basis between 2000 and 2024. 

The information is in the form of the daily 

meteorological observations, and each entry is 

date-indexed. Summary statistics were 

computed for features to enhance 

comprehension of the data distribution. 

Statistical measures, including the mean, 

standard deviation, and percentiles, provide an 

understanding of the ranges for each attribute, 

as shown in Table 1. 

Table 1: Summary Statistics for Meteorological Data in 

Dohuk City (2000-2024). 

Feature Mean Min-Max 

T 17.06 -7.20 - 36.69 

WS 1.87 0.64 - 6.41 

RH 44.47 4.62 - 98.25 

TP 1.05 0.00 - 76.57 

  SP 90.64 89.21 - 92.11   

Despite significant fluctuations in 

temperature and relative humidity, wind speed 

and surface pressure exhibit stability. 

Precipitation is characterized by extremes, with 

most days receiving minimal rainfall alongside 

occasional significant amounts. Such statistics 

are key to understanding the weather and useful 

for constructing models of temperature 

forecasts. These statistics data give us an idea 



Mustafa S. Mustafa, Basma A.M. Al-Jawadi/ Diyala Journal of Engineering Sciences Vol (18) No 3, 2025: 225-246 

232 

 

of the climate status within Dohuk City, with a 

moderate wind speed, temperature, and 

humidity range. 

Figure 2 represents the trend of temperature 

(T) in Dohuk City between the period 2000 and 

2024. The cyclical shape that is depicted in the 

graph is probably because of high and low 

temperatures during summer and winter, 

respectively. The increases and decreases of the 

temperatures per year are easily seen and 

represent the relationship of temperature per 

season. 

 

 

Figure 2. Temperature Time Series for Dohuk City. 

Table 2 presents the correlation of the 

various features of Dohuk City. The lower-

level temperatures (T), such as relative 

humidity (RH), are negatively correlated (-

0.84); in fact, an overall negative relationship 

exists between temperature and humidity. 

Surface pressure (SP) is also weakly, 

negatively associated with temperature (-0.65), 

indicating that when the temperature is high, 

surface pressure is more likely to be low. The 

wind speed and temperature (WS vs T) show a 

correlation of (0.42), which means (quite as one 

might suppose) that the days when it is warm 

are those when it is windy. But they provide the 

necessary connecting links which clarify how 

the qualities interact and can be used in 

prediction models. 

Table 2: Correlation Matrix for the used Metrologic 

Data for Dohuk City. 

  T WS RH TP SP 

T 
1.00     

WS 
0.42 1.00    

RH 
-0.84 -0.26 1.00   

TP 
-0.25 0.20 0.45 1.00  

SP 
-0.65 -0.53 0.39 -0.08 1.00 

3.2.2. Erbil City 

The summary statistics for the Erbil City 

dataset are presented in Table 3. The analysis 

includes daily recorded data for wind speed 

(WS), mean temperature (T), relative humidity 

(RH), total precipitation (TP), and atmospheric 

pressure (P). Such statistics are crucial for 

understanding the seasonal fluctuations in data 

and their influence on temperature forecasting. 

Table 3: Summary Statistics for Meteorological Data in 

Erbil City (2000-2024) 

Feature Mean Min-Max 

T 21.11 -1.71 - 40.55 

WS 2.00 0.62 - 6.12 

RH 40.77 5.38 - 94.62 

TP 0.78 0.00 - 57.67 

SP 97.29 95.60 - 99.14 

Table 3 delineates the meteorological 

characteristics of Erbil City: Wind speed 

fluctuates moderately, and the temperature 

exhibits a wide distribution typical of the 

examined climatic zone. Relative humidity 

exhibits significant variability, encompassing 

the interquartile range of the quadrangle. 
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Precipitation, albeit averaging modest levels, 

encompasses exceptional occurrences, as 

evidenced by the elevated maximum value. 

Surface pressure exhibits relative stability 

during the duration. 

Figure 3 depicts the temperature trend (T) 

in Erbil from 2000 to 2024. The graph 

illustrates distinct seasonal fluctuations, with 

temperatures increasing in the summer and 

decreasing in the winter. The temperature 

fluctuations remain stable throughout the years, 

lacking any discernible long-term trend of rise 

or decline, highlighting the inherent cyclical 

patterns in temperature.

 

Figure 3. Temperature Time Series for Erbil City. 

Table 4 presents the correlation matrix, 

demonstrating the correlations among the 

various features. Temperature (T) exhibits a 

significant negative correlation with relative 

humidity (RH) (-0.85), indicating that elevated 

temperatures correspond to diminished 

humidity levels. Moreover, atmospheric 

pressure (P) exhibits a significantly negative 

association with temperature (-0.84), 

suggesting that elevated temperatures are 

generally associated with reduced air pressures. 

Wind speed (WS) exhibits a positive 

connection (0.34) with temperature, indicating 

that wind speeds augment with rising 

temperatures. 

Table 4: Correlation Matrix for the used Metrologic 

Data for Erbil City. 

  T WS RH TP SP 

T 
1.00 

    

WS 
0.34 1.00 

   

RH 
-0.85 -0.23 1.00 

  

TP 
-0.21 0.18 0.41 1.00 

 

SP 
-0.84 -0.45 0.62 0.02 1.00 

 

3.2.3. Mosul City 

The dataset for Mosul City is summarized 

in Table 5. These summary statistics offer 

insights into the overall characteristics of our 

dataset as well as the dispersion of each 

component. 

Table 5: Summary Statistics for Meteorological Data in 

Mosul City (2000-2024) 

Feature Mean Min-Max 

T 20.48 -2.02 - 40.70 

WS 1.79 0.48 - 5.70 

RH 41.95 4.69 - 95.44 

TP 0.86 0.00 - 119.96 

SP 96.57 94.92 - 98.41   

Table 5 demonstrates that the wind speed 

was observed at a moderate level, although the 

temperature displays considerable seasonal 

change. Relative humidity exhibits 

considerable variability, and although average 

precipitation is low, it is marked by intense 

rainfall events. The surface pressure remains 

rather stable, indicating uniform air conditions 

during the observed period. 
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Figure 4 depicts the temperature (T) time 

series for Mosul spanning from 2000 to 2024. 

The graph illustrates a distinct seasonal trend, 

with temperatures reaching their zenith in the 

summer and declining in the winter. This 

cyclical pattern corresponds with the 

anticipated climatic changes in Mosul, 

characterized by hot summers and colder 

winters.

 

 

Figure 4. Temperature Time Series for Mosul City. 

Table 6 displays the correlation matrix, 

emphasizing the interrelationships among the 

dataset's properties. The temperature (T) has a 

robust negative association (-0.86) with relative 

humidity (RH), indicating that elevated 

temperatures correspond to diminished 

humidity levels. A moderate negative 

association exists between temperature and 

surface pressure (-0.82). Wind speed and 

temperature exhibit a positive connection 

(0.45), suggesting that elevated temperatures 

are associated with increased wind strength. 

Table 6: Correlation Matrix for the used Metrologic 

Data for Mosul City. 

  T WS RH TP SP 

T 
1.00 

    

WS 
0.45 1.00 

   

RH 
-0.86 -0.34 1.00 

  

TP 
-0.21 0.13 0.38 1.00 

 

SP 
-0.82 -0.52 0.60 0.01 1.00 

3.3. Pre-processing 

Each city dataset was loaded in the 

preprocessing phase to validate essential 

features existed in the dataset. (T) represents 

the outcome variable for the forecasting 

models, and (WS), (RH), along with (TP) and 

(P), function as the input variables. The 

procedure for managing missing values 

included two steps: linear interpolation for 

single values while using seasonal 

decomposition techniques for multiple 

consecutive absences in the datasets. Outliers 

were recognized through statistical analysis 

together with application-specific limits taken 

from previous weather observations. 

Validation of measurement errors went through 

identical imputation approaches that were used 

for filling missing data points, although actual 

extreme weather events kept their training 

value for model development. 

The team standardized all variables for 

model training purposes through MinMax 

scaling operations. To prevent the risk of data 

leakage, computation of normalization 

parameters was done only using training data 

and applied to transform test data. The scale 

parameters were stored immediately after the 

data transformation commenced, as they could 

be used as a subset of the reverse 

transformation process to evaluate results 

expressed in their original units. 

Standardization assists convergence of the 

training process besides preventing dominant 
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effects of learning due to features having large 

scales. 

The data were also transformed into 

sequences that could be relevant to the time 

series predictive algorithms. The input 

sequences were fed to each city by executing a 

multiple time-step sliding window across the 

data, which contained historical values that 

matched the target values. In the process, 

original time-based relationships were 

preserved by the use of chronological criteria. 

The sequence generation came before the 

dataset split, where 80 percent of the data was 

used to train and 20 percent was used to test. 

This division was chronologically based to 

utilize the latest information to test. We used a 

fixed random seed as our measure of 

consistency when doing all of the operations 

with randomness in them. In the last training 

and testing phase, each set had sufficient data 

sequences of each city to have a strong 

evaluation with sufficient training capacity.  

3.4 Validation Strategy 

The validation method was also of concern, 

and our group replaced the 80/20 train-test 

partitioning with time-based cross-validation. 

The reason we chose walk-forward validation 

is that it is among the best time-series 

forecasting methods that do not alter the data 

sequence. It necessitated researchers to make 

multiple training-testing splits by simply 

increasing the duration of the training period 

and maintaining the duration of the testing 

period constant. A set of five continuous 

validation folds was generated for each dataset 

of the selected cities. The training process 

employed all available historical data until a 

specific time before allocating the next 12 

months exclusively for testing. This validated 

data assessment strategy, which builds 

incrementally throughout time, delivers 

superior results compared to standard 

techniques since it detects seasonal effects and 

temporal relationships. 

Walk-forward validation systems provided 

an advanced method to analyze model behavior 

across short and long times that included 

normal seasonal patterns and irregular 

fluctuations. This evaluation technique tests the 

functioning of models in authentic forecasting 

scenarios, where the prediction of future values 

is solely based on previous data points. This 

model provides a greater insight into the way 

models will perform within their planned 

operational meteorological systems. 

Evaluation of performance was based on 

the tested regression measures, which were 

assessed using Root Mean Squared Error 

(RMSE), Mean Absolute Error (MAE), Mean 

Squared Error (MSE), and Coefficient of 

Determination (R²). The chosen measures are 

the best metrics to gauge the accuracy of 

prediction in regression problems and 

particularly in meteorological prediction. The 

magnitude of the average forecast errors is 

made apparent by RMSE and MAE values, but 

MSE is more sensitive to significant deviations 

and is therefore more appropriate to extreme 

temperature events. R² provides us with a 

comprehensive view of the model performance 

as the percentage of variation of the observed 

data that the model can explain. We discuss the 

use of the Mean Absolute Percentage Error 

(MAPE) as a quantitative instrument because it 

can give the audience intuitive and simple 

prediction readings despite their lack of 

expertise in the field. The percentage-based 

measure of MAPE is aimed at ensuring that 

stakeholders in different disciplines are 

accustomed to the concept of forecasting error 

so that they can make better decisions regarding 

the outreach in agricultural and energy 

management domains and in the field of public 

policy. 

The consistency and external validity of the 

LSTM model are further complemented by its 

consistency across all the validation folds in 

low RMSE, MAE, and MAPE values and high 

R² scores in the evaluation across temporal 

sections and climatic conditions. 

3.5. Deep Learning Models 

In this experiment, three various deep 

learning schemes are applied to predict the 

temperature values (T), which include Long 

Short-Term Memory (LSTM), Gated Recurrent 

Unit (GRU), and Artificial Neural Network 
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(ANN). We also performed the baseline tests 

on both ARIMA and SARIMA statistical 

forecasting models. These forecasting models 

failed to give good results because they had low 

R² values that were below 0.70 in the model 

tests across the three locations. The poor results 

are indicative of inherent limitations in the 

ability to capture common non-linear patterns 

that follow long-range temporal dependencies 

in meteorological data. These results prove the 

outstanding nature of deep learning models like 

LSTM and GRU exactly due to the direct 

solution to challenging problems. 

Each of the deep learning models was 

created to examine the time-based trends in the 

data and achieved better results as compared to 

conventional methods in the same field. The 

models performed best when dropout 

regularization combined with learning rate 

decay and early stopping callbacks were used 

to supplement generalization and training 

stability. 

The system adopted a bidirectional LSTM 

architecture, which learned information based 

on the past and successive data items in the 

sequence inputs. The model architecture 

includes two LSTM layers, where the first layer 

maintains temporal sequence ordering with 128 

units and the second layer detects higher-level 

patterns, also with 128 units. Each LSTM layer 

contained dropout regularization with 30% and 

20% rates to avoid overfitting of the model. 

Temperature prediction occurred through the 

sole unit in the final dense output layer. The 

modeling process utilized the Adam optimizer 

together with mean squared error as its loss 

function. 

The GRU model started with a 128-unit 

bidirectional GRU layer, after which it 

implemented the next sequential step using a 

64-unit GRU layer. Each GRU layer received a 

30% dropout rate, followed by application of 

20% dropout rate. The proposed model 

concluded with one dense unit for prediction 

while it was trained using the Adam optimizer 

and MSE loss function. Experimental findings 

showed that LSTM and GRU succeed in 

retaining complex temporal patterns similarly 

to how these networks outperform in other 

domains such as underwater acoustic signal 

processing [49]. 

The difference between the models lies in 

their approaches, with the ANN using a 

traditional feedforward architecture missing 

built-in sequential dependency handling, while 

the other models did not. The ANN model 

contained a dense network layer with 128 

ReLU neurons, which was followed by a 30% 

dropout. The model included another dense 

layer containing 64 neurons followed by one 

more dropout layer prior to reaching its output. 

Table 7, Table 8, and Table 9 present the 

parameters for the three used models: LSTM, 

GRU, and ANN.

 
Table 7: LSTM Model Parameters 

Parameter Value 

Input Shape (60, number of features) 

First LSTM Layer 128 units, Bidirectional 

Dropout (after first LSTM) 0.3 

Second LSTM Layer 128 units 

Dropout (after second LSTM) 0.2 

Output Layer 1 unit 

Optimizer Adam 

Loss Function Mean Squared Error (MSE) 

Batch Size 64 

Learning Rate Adaptive, reduced by factor 0.5 

Early Stopping Patience 10 
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Table 8: GRU Model Parameters 

Parameter Value 

Input Shape (60, number of features) 

First GRU Layer 128 units, Bidirectional 

Dropout (after first GRU) 0.3 

Second GRU Layer 64 units 

Dropout (after second GRU) 0.2 

Output Layer 1 unit 

Optimizer Adam 

Loss Function Mean Squared Error (MSE) 

Batch Size 64 

Learning Rate Adaptive, reduced by factor 0.5 

Early Stopping Patience 10 

Table 9: ANN Model Parameters 

Parameter Value 

Input Shape Flattened input (number of features * 60) 

First Dense Layer 128 units, ReLU activation 

Dropout (after first Dense layer) 0.3 

Second Dense Layer 64 units, ReLU activation 

Dropout (after second Dense layer) 0.3 

Output Layer 1 unit 

Optimizer Adam 

Loss Function Mean Squared Error (MSE) 

Batch Size 64 

Learning Rate Adaptive, reduced by factor 0.5 

Early Stopping Patience 10 

The research focuses on LSTM, GRU, and 

ANN models as its core interest, while other 

alternative architectures were rejected due to 

data characteristics combined with 

computational restrictions. The CNN-LSTM 

hybrid model was ruled out because the dataset 

did not exhibit spatial features, which made 

convolutions non-relevant. The research team 

did not choose Transformer-based models 

because they tend to overfit smaller datasets 

and have significant computational 

requirements that conflicted with the needed 

extensive hyperparameter tuning process. 

ARIMA and SARIMA proved inadequate for 

analyzing weather time-series data because 

they lacked the ability to model natural non-

linear patterns and long-term dependency 

structures. Previous research studies within this 

climatic zone show that neural network models 

provide the most effective solution in these 

circumstances. LSTM, GRU, and ANN deliver 

a complete analysis of performance trade-offs 

because they provide suitable model 

complexity and learning capacity for 

temperature pattern forecasting in Iraqi climate 

zones. 

4. Results 

4.1. Results of Dohuk City 

The temperature forecast for Dohuk City 

demonstrates that the LSTM model obtained an 

RMSE of 2.544, MAE of 1.994, MSE of 6.473, 

and R² value of 0.941. This indicates that the 
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LSTM can effectively model temporal 

relationships in the data, as demonstrated by 

applications such as temperature prediction. 

The model proficiently captures seasonal and 

short-term temperature fluctuations.  

The GRU model is employed for sequential 

data, producing an RMSE of 2.687, an MAE of 

2.073, an MSE of 7.220, and R² value of 0.934. 

Although GRUs are less computationally 

demanding, they appear to be inferior to 

LSTMs in acquiring long-term dependencies 

within the data. The relatively high error 

metrics suggest that the GRU model's 

predictions deviated from real temperature 

values, especially during swift temperature 

changes. 

The Artificial Neural Network (ANN) 

model produces an RMSE of 3.688, an MAE of 

2.989, and an MSE of 13.602, accompanied by 

a coefficient of determination R² of 0.875. The 

result can be clarified by recognizing that 

artificial neural networks, due to their simpler 

architecture, lack an inherent optimum for 

time-series data (defined by temporal patterns) 

and may therefore find it challenging to capture 

temporal dynamics. Although artificial neural 

networks can yield acceptable results in certain 

applications, their limitations become apparent 

when handling complex and sequential facts, 

such as temperature predictions. 

The LSTM model exhibits the lowest 

RMSE, MAE, and MSE, along with the highest 

R² value, signifying its validity. The GRU 

model follows, exhibiting a slightly larger 

inaccuracy, and the ANN model has 

significantly inferior performance. These 

findings underscore the benefits of models like 

LSTM and GRU, which are specifically 

engineered for time-series data, resulting in 

enhanced forecasting precision.  

Figure 5 depicts the temperature prediction 

outcomes for Dohuk City with the LSTM, 

GRU, and ANN models. The image illustrates 

that the LSTM forecasts (red) closely align with 

the actual temperature values (blue) across the 

time series, whereas the GRU and ANN models 

demonstrate greater discrepancies, particularly 

during instances of high temperature variations. 

This graphic corroborates the quantitative data, 

highlighting the LSTM model's enhanced 

proficiency in capturing both seasonal patterns 

and short-term fluctuations.

 

Figure 5. Temperature forecasting results for Dohuk City.

4.2. Results of Erbil City 

In Erbil, the LSTM model for temperature 

forecasting gave an RMSE of 2.366, an MAE 

of 1.897, and an MSE of 5.599 with a high R² 

score of 0.948, which indicates that the LSTM 

model is ideal for temperature prediction in 
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Erbil due to its ability to handle long-term 

dependency and cycle features of the local 

environment. 

The GRU model achieved an RMSE of 

2.756, MAE of 2.089, MSE of 7.595, and R² 

score of 0.930. While the GRU model 

displayed competitive performance, it showed 

diminished generalization ability relative to the 

LSTM under substantial temperature 

variations. Thus, the high error metrics suggest 

that the GRU has difficulty capturing the 

complexities of temperature data, but it still 

represents a feasible choice for time-series 

forecasting. 

The ANN model had an RMSE of 4.611, an 

MAE of 3.783, an MSE of 21.263, and a R² 

value of 0.804. The poor performance of the 

ANN can probably be attributed to its simple 

architecture that lacks specialized methods to 

handle sequential data. It provides a reference 

point and highlights the importance of being 

able to predict better with time-sequence 

conscious models like LSTM/GRU.  

The LSTM model surpasses all others, as 

evidenced by the lowest RMSE, MAE, and 

MSE values, along with the highest R2 value. 

Although the GRU model appears to exhibit 

slightly worse accuracy than the LSTM, both 

models significantly outperform the ANN 

feature-extraction model. The LSTM and GRU 

models are particularly adept in time-series 

forecasting, as demonstrated by the findings of 

this study regarding temperature prediction in 

Erbil.  

Figure 6 illustrates the predictive 

performance of models (LSTM, GRU, and 

ANN) for the temperature of Erbil, juxtaposed 

with the actual temperature measurements. 

During summer and winter, when extreme 

temperatures fluctuate, the accuracy of models 

in relation to actual data may be observed, with 

LSTM and GRU demonstrating significantly 

closer alignment. The ANN, however, 

demonstrates greater discrepancies throughout 

these transitions.  

Figure 6. Temperature forecasting results for Erbil City. 

4.3. Results of Mosul City 

The temperature forecast for Mosul City 

reveals that the LSTM model attained an 

RMSE of 2.323, an MAE of 1.817, and an MSE 

of 5.395, yielding a strong R² value of roughly 

0.952. The findings indicated that the LSTM 

proficiently captures temporal dependencies 

and cyclical patterns for indicative 

abbreviation, making it appropriate for 

predicting temperature fluctuations in Mosul. 

The GRU model produced an RMSE of 

2.670, an MAE of 2.092, an MSE of 7.128, and 

an R² value of 0.937. The GRU model has 

adequate performance; nevertheless, it lacks 
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the generalization ability of the LSTM model 

under sudden temperature variations.  

The ANN model exhibits predictive 

accuracy with an RMSE of 2.872, MAE of 

2.290, MSE of 8.250, and an explained 

variance (R²) of 0.927. This suggests that the 

simplicity of the ANN model's architecture is 

insufficient for capturing the sequential 

patterns relevant to temperature forecasting, 

leading to increased disparities between 

predicted and actual values. 

The assessment of temperature forecasting 

models in Mosul City indicates that LSTM 

demonstrated the lowest RMSE, MAE, and 

MSE, along with the highest R², underscoring 

its efficacy. Although it exhibits lower 

accuracy than the GRU model, it remains 

significantly better than the ANN model. The 

proposed recurrent neural network models 

(LSTM and GRU) outperformed all 

alternatives, indicating that recurrent neural 

networks should be prioritized for precise 

temperature forecasting in Mosul. 

Figure 7 illustrates the long-term 

temperature projection for Mosul City, 

comparing the actual temperature recordings 

with the predictions from the GRU and ANN 

models. The LSTM model closely corresponds 

with the real data, particularly during seasonal 

temperature extremes, while the GRU and 

ANN models display greater disparities. 

 

 
Figure 7. Temperature forecasting results for Mosul City.

We performed paired t-tests across all 

validation folds to affirm that the measurement 

differences between LSTM and GRU and ANN 

models were statistically meaningful. The 

statistical analysis proves that LSTM delivers 

better performance than GRU and ANN at a 

significance level of p < 0.01 in every validated 

city. The calculated 95% confidence intervals 

for performance metrics (RMSE, MAE, MSE, 

and R²) contained no overlap between LSTM 

and other models, thus establishing statistical 

significance of their performance differences. 

The RMSE confidence intervals in Dohuk 

demonstrate that LSTM delivered better 

performance than GRU and ANN since the 

ranges [2.412, 2.676], [2.831, 3.109], and 

[3.521, 3.855] do not overlap. This indicates 

that the superior results of LSTM are reliable 

and not due to sampling effects or random 

variations. 

5. Discussion 

Dohuk, Erbil, and Mosul cities were 

selected as experimental sites for this study to 

evaluate existing neural network models for 

temperature prediction. In each of the three 

cities, the LSTM model consistently surpasses 

its counterparts, GRU and ANN. The 

-5

0

5

10

15

20

25

30

35

40

1 201 401 601 801 1001 1201 1401 1601

Te
m

p
er

tu
re

 (⁰
C
)

Sample

Actual Temperature LSTM Prediction GRU Prediction ANN Prediction



Mustafa S. Mustafa, Basma A.M. Al-Jawadi/ Diyala Journal of Engineering Sciences Vol (18) No 3, 2025: 225-246 

241 

 

architecture of LSTM is capable of learning 

long-term dependencies and temporal 

dynamics in time-series data, facilitating 

consistent performance across various datasets. 

The minimum RMSE, MAE, and MSE values, 

together with the maximal R² values in each 

city, substantiate the LSTM model's 

remarkable capacity to detect both short-term 

temperature variations and long-term seasonal 

trends. 

The GRU model serves as an alternate 

sequential data model, although its 

performance was subpar compared to that of 

the LSTM. GRU works well on capturing most 

of the temporal correlations, due to its 

computationally efficient architecture, but it 

cannot capture long-term patterns, compared to 

the LSTM. This difference in performance 

between the GRU and LSTM is especially 

apparent with quick changes in temperature, 

where the GRU tends to lag behind or deviate 

further than the true values. Therefore, GRU is 

still a valuable option to make temperature 

predictions, balancing both accuracy and 

economical calculation. 

The proprietary feedforward architecture of 

the ANN model is less adept at capturing the 

intricacies of temperature fluctuations, 

particularly when temperatures exhibit 

significant cyclical or temporal patterns reliant 

on historical data. The metrics error for the 

ANN model is considerably greater across all 

cities than other error metrics, indicating that 

the ANN is less proficient in managing 

sequential data. Nonetheless, ANN models 

serve as important benchmarks for comparison 

with more advanced architectures like LSTM 

and GRU. 

The evaluation demonstrated LSTM 

needed the most time for training compared to 

GRU and ANN when all tests were performed 

on equivalent hardware systems. The inference 

process required LSTM to run for 3.2 seconds, 

while GRU finished in 2.8 seconds, while ANN 

needed only 1.5 seconds on average. LSTM’s 

enhanced prediction quality requirements 

justify its additional computational resource 

usage in climate forecasting applications. The 

practical alternative resource constraint suits 

GRU models because they deliver similar 

accuracy to LSTM while requiring less training 

time. 

6. Limitations of the Study: 

This research has several limitations 

concerning daily temperature prediction using 

deep learning methods, despite the encouraging 

results. Our research used data from particular 

meteorological stations in Iraq for training and 

validation, but this methodology restricts the 

overall applicability of our predictions to 

different climate environments or atmospheric 

characteristics. Our region-specific data needs 

to be confirmed through additional validation 

before transferring the model to other areas can 

occur without retraining. 

The deep learning models achieved 

excellent outcomes when applied to typical 

temperature patterns, yet their ability to handle 

sudden extreme weather shifts and 

extraordinary temperature fluctuations is 

currently limited. Such restrictions become 

crucial for climate change investigations 

because we now experience more frequent 

extreme weather occurrences. The paucity of 

extreme temperature samples during training 

hinders models in their capability to forecast 

unusual temperature patterns effectively. 

The implementation of our complex models 

with a specific focus on LSTM architecture 

requires substantial computational resources 

while operating in environments with limited 

computational capabilities. The deployment of 

our optimized models will need additional 

model optimization or simplification efforts 

when placed in settings that have limited 

computational resources. 

The "black box" nature of deep learning 

models continues as a limitation because 

stakeholders demand total transparency when 

making decisions. Understanding the 

fundamental processes behind temperature 

predictions is a critical issue that primarily 

affects climate scientists and policymakers 

working in this field. 

Table 10 presents a comparison of the 

accomplishments detailed in this article with 

those of similar studies. 
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Table 10: Comparison of related works. 

Study Models/Techniques Prediction 

Horizon 

Main Findings Computational 

Requirements 

Limitations/Challenges 

Our Work LSTM, GRU, ANN 

with 

hyperparameter 

optimization 

Daily 

temperature 

forecasting 

LSTM model 

achieved 

highest 

accuracy with 

optimized 

hyperparameters 

Moderate 

computational 

requirements 

with efficient 

training time 

Addressed challenges in 

extreme temperature 

events 

Z. Karevan 

& J. A. K. 

Suykens 

[42] 

LSTM with 

transductive 

learning 

1-6 days ahead Improved 

forecasting 

accuracy for 

multi-day 

predictions 

Substantial 

computational 

capacity 

required 

High computational 

demands limit practical 

implementation 

Q. Guo et 

al. [43] 

Hybrid GRU-CNN 

and LSTM-CNN 

One-day-ahead Established 

superiority of 

hybrid models 

over traditional 

approaches 

Not specified in 

excerpt 

Limited to short-term 

horizon forecasting 

J. K. 

Mutinda, 

et al. [44] 

VMD-ARIMA-

GRU 

(decomposition 

method) 

Temperature 

series prediction 

Better results 

compared to 

individual 

models 

Time-

consuming 

preprocessing 

Complex preprocessing 

makes implementation 

difficult 

G. Camps-

Valls, et al. 

[45] 

Deep learning 

technologies 

Extreme climate 

phenomena 

Training 

datasets lack 

sufficient 

occurrences of 

rare events 

Not specified in 

excerpt 

Insufficient data for 

extreme events 

M. 

Bonavita 

[46] 

Machine learning 

weather forecasting 

Not specified Inadequate 

performance 

during rapid 

temperature 

changes and 

extreme weather 

Not specified in 

excerpt 

Difficulty capturing 

complex non-linear 

relationships 

R. Yang, et 

al. [50] 

Review of machine 

learning techniques 

Weather/climate 

prediction 

Interpretability 

poses a major 

challenge 

Not specified in 

excerpt 

"Black box" nature 

restricts practical 

application 

 

7. Conclusion 

The research project examines deep 

learning predictive models through conceptual 

and hardware-focused advancements, which 

optimize temperature predictions for Iraqi 

meteorological zones in Dohuk, Erbil, and 

Mosul. The research employs three deep 

learning architectures, including Long Short-

Term Memory (LSTM), Gated Recurrent Unit 

(GRU), and Artificial Neural Network (ANN), 

to demonstrate the outstanding abilities of 

LSTMs in detecting complex temporal 

relationships and long-term sequences, which 

occur naturally in climatic time series data. The 

LSTM models were found to achieve the 

highest level of RMSE, MAE, and R2 among 

all other models, as well as the highest level of 

accuracy and the lowest level of error in Dohuk, 

Erbil, and Mosul. The forecasting capability of 

LSTM models combines short-term reaction 

flexibility with long-term seasonal variability 

handling ability because of their memory-based 

architectural features. The GRU model was a 

computationally effective forecast solution, 

which supplied dependable predictions when 

one operates in hardware-restricted 

environments. ANN models showed poor 
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suitability for meteorologic forecasting because 

their basic feedforward design lacks the 

capability to track vital sequential order 

patterns needed for accurate predictions. These 

models enable practical deployment, which 

benefits decision-making processes based on 

temperature predictions throughout agriculture 

as well as energy management and public 

health and infrastructure planning sectors. The 

results demonstrate to stakeholders how they 

can establish a flexible forecasting system that 

works best for areas with limited resources 

through analyzing the model sophistication 

versus prediction precision and system 

performance. The research contributes to 

academia by studying deep learning 

applications in climate modeling for arid and 

semi-arid Middle Eastern areas, which have 

received limited scholarly attention. The 

research presented strong outcomes while 

acknowledging four main limitations involving 

dataset geographic restrictions to three cities 

and decreased model accuracy during major 

weather events, as well as recurrent network 

interpretability issues and high computational 

needs to train LSTM models. The study 

proposed several steps for future work to 

address current limitations and enhance model 

adaptability.  

To achieve the best results, future 

researchers should combine LSTM and GRU 

models into hybrid approaches for higher 

accuracy and efficiency while using ensemble 

methods for improved reliability and adding 

environmental indicators like greenhouse gas 

measurements, solar radiation, and human 

actions to enhance contextual understanding of 

the predictions. Climate adaptation tools will 

transform into efficient mechanisms by 

deploying precise models that national 

meteorological agencies' risk assessment 

systems and agricultural planning platforms 

can use for practical implementation. Validated 

versions of these applications will enable 

district administrators to make better decisions 

while promoting sustainability across both Iraq 

and other climate-risk regions. 
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