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ABSTRACT:- The purpose of this paper is to use Radial Basis Function Neural Network
(RBFNN) as an estimator for stator flux and electromagnetic torque in Direct Torque Control
(DTC) systems used as a driver of a 3-phase induction motor, in order to reduce the ripples in
the output torque. This paper includes design, construction and training for three different
modes of operation of RBFNN, in which the spread constant has a different value for each
estimated parameter during the network training. Then, the network, which has independent
outputs, gives the best results choused as an estimator in the proposed DTC system.
Matlab/neural network toolbox used for training the proposed estimator at different load
torques.

The Simulation results are obtained using program of Matlab/Simulink. The coincidence of
the values of the output data obtained from the proposed estimator and that from the
conventional one proves the proposed system accuracy.

Keyword: Induction Motor, Radial Basis Function Neural Network, Direct Torque Control.

1- INTRODUCTION

Direct Torque Control (DTC) system used as a variable speed driver for induction
machines has emerged in the middle of 1980's by Isao Takahshi and M. Depenbrock. In this
system, the control of the stator flux and the torque occurs directly by selecting the
appropriate inverter state. DTC system is the first technology to control the "real" motor
control variables of torque and flux [1], [2].

The main features of DTC system are summarized as follows:

1- It operates with closed torque and flux loops without current controllers.
2- It needs stator flux and torque estimation.
3- It is a speed sensorless control method.
4- It has simple and robust control structure; however, the performance of DTC strongly
depends on the quality of the estimation of the flux and torque.

In order to improve DTC performance there was many control strategies presented since
1990's, one of these methods was the Artificial Intelligent (AI) [Artificial Neural Networks
(ANNSs), Fuzzy Logic Control (FLC)], This control strategy can be used as an estimator to
improve the DTC system fed induction motor [3], [4].

This paper uses the radial basis function neural networks (RBFNN) to operate as an
estimator for stator flux and electromagnetic torque instead of conventional estimator to
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improve the estimation process of the above parameters, subsequently improves the
performance of the DTC system.

2- THE DIRECT TORQUE CONTROL TECHNIQUE

Figure(1) shows schematically the block diagram of DTC system that requires an
efficient flux and torque estimator. In normal operation, two of the motor phase currents (i,,
1) and the DC bus voltage (Vq4.) are simply measured, together with the inverter’s switch
positions (Vs, Vs, V). The measured information from the motor fed to the stator flux and
torque estimators (Adaptive Motor Model) [5], [6]. This system depending on the measured
values of voltages and currents for the induction motor to estimate the stator flux and
electromagnet torque and to use them as a feedback signals for control.

The estimated values are compared with the reference ones; the magnitude of the error
between them compared by hysteresis comparators. A switching table (that uses the outputs of
the comparators and the position sector detector of the stator flux) is achieved to get the
optimal voltage vector needed for the power-switching device of the inverter. The
construction of DTC model is performed using Matlab/Simulink program [7].

The equations (1) to (7) refer to the dynamic model of a 3-phase balanced squirrel cage-
induction motor in a d-q stationary reference frame, neglecting the saturation effects [9].

d(jtsd = Vvd - rva (1)

i, — —
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where

oc=(L,L, -L)/L,

The voltage selection based on a 6-sector d-q plane, with the stator flux magnitude and
the torque angle involved. The following equation relates the electromagnetic torque and the
stator flux:

T,=C ‘Z‘ * ‘:‘ sinf (7)
where: (C) is a constant; () is the angle existing between the stator flux and the rotor flux,
(torque angle).[6]

In each sector, the stator flux and electromagnetic torque change depend on the voltage
vector selected. For example, if in the first sector a [V3 (0 1 0)] voltage vector is selected, the
stator flux magnitude decreases; but the electromagnetic torque increases along with the
torque angle. For each sector, a specific voltage vector selection, changes stator flux
magnitude and torque characteristics in a different way, as it show in Figure(2). [7].

3- RADIAL BASIS FUNCTION NEURAL NETWORK(RBFNN) MODEL

The name “Radial Basis Function” stems from the radial symmetry with respect to the
center. The RBFNN constructed from input, hidden layers of normalized Gaussian activation
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functions and output. The RBFNN based on the concept of the locally tuned and overlapping
receptive field structure. RBFNN is widely used as a universal approximator in the area of
nonlinear mapping due to its performance despite a simple structure [10].

Figure (3) shows a radial basis function neural network with i inputs. Notice that the
expression for the net input of a (radbas) neuron is different from that of neurons in
conventional NN. Here the net input to the (radbas) transfer function is the vector distance
between its weight vector (W) and the input vector (x) multiplied by the bias (b). The (||dist||)
box in this figure accepts the input vector (x) and the single row input weight matrix, and
produces the dot product of the two. Figure (4) shows a plot of the (radbas) transfer function.
The transfer function for a radial basis neuron (radbas) is:

radbas (n)= e (8)

The radial basis function has a maximum of (1) when its input is (0). As the distance
(||dist||) between (W) and (x) decreases, the output increases. Thus, a radial basis neuron acts
as a detector that produces (1) whenever the input (x) is identical to its weight vector (W). The
bias (b) allows the adjustment of the sensitivity of the (radbas) neuron.

For example, if a neuron had a bias of (0.1) its output is (0.5) for any input vector (x)
at vector distance of (8.33) [0.833/b] from its weight vector (W) (see Figure (4)) [11][12].

4- DTC BASED ON RBFNN AS AN ESTIMATOR
Figure (5) shows the use of RBFNN for DTC system as an estimator instead of
classical estimator. From this figure, the input data used in the trained RBF networks are two
motor phase currents (is, , is5), the DC bus voltage (V;), and the inverter's switch positions
(Vsane), while the output data are the electromagnetic torque (Te), stator flux (4;), and sector
(Sp)[flux angle (6;)].
In order to achieve a satisfactory DTC system, the design, construction and training of
a three different cases of the RBFNNs operates as flux and torque estimators of DTC system
by using neural network toolbox in Matlab program as follow:
A- Case No.1:
RBFNN has six inputs include (iss, isp, Vae, Vsao Vso» Vse) and one output appose (Te, As,Sk)
together, as it show in Figure (6).
B- Case No.2:
RBFNN has six mputs include (iss, isp, Vaer Viar Vb, Vse), two outputs appose (As, Sk)
together and (T.), as it show in Figure (7).
C- Case No.3:
RBFNN Network has six inputs include (iss, ise, Vie, Viaw Vb, Vse), three separated
outputs; (Te), (4s) and (Sk) as it show in Figure (8).

5- SIMULATION RESULTS

The simulation and training for RBFNN of the three different cases as estimators for
stator flux and electromagnetic torque in the DTC driver of induction motor by using NN-tool
box and Simulink in Mat lab program, gives the ability to compare their results at (no-load,
half-load, full-load) with these of the classical one. The errors values of the three parameters
for both estimators, the electromagnetic torques (Te), stator fluxes (As) and sectors (Si) for the
three case and the three different loading conditions are shown in Figures (9, 10, 11).
where (ETe-Net, EA-Net, ESi-Net): Values of the difference between Estimated values from
conventional DTC and that of the proposed one for electromagnetic torque (T.), stator fluxes
(As) and sectors (Sk) respectively for the three Nets (Netl, Net2, Net3).

Diyala Journal of Engineering Sciences, Vol. 04, No. 02, December 2011
74



A PROPOSED ESTIMATOR FOR A DIRECT TORQUE CONTROL OF INDUCTION MOTOR BY
USING RADIAL BASIS FUNCTION NEURAL NETWORK TECHNIQUE

Table (1) shows the average values of errors of (T, As, S) for the above three cases, and
then the best case of the RBFNN has been chosen to be simulated.
where errors of (Te, As, Sk): are calculated taking into consideration that the spread constant is
not the same for the different parameters, it has the following values for the three variable (T,
As, Sk) as (1, 0.5, 0.3) respectively.

Table (1) leads to a conclusion that Net-3 is the best choice because of its reduced error as
compared with that of Net-1 and Net-2. This is because in this net, the training occurs
separately and the output of each parameter is independent on the others, so this feature will
leads to easiness in network operation and gives fastest response and accurate results.

A simulation was carried out to verify the RBFN estimator where the squirrel cage
induction motor used in this case study is a 2.2Kw, 400V, 4pole, SOHz, (T;.= 14.6Nm).[see
appendix-A].

Figures (12), (13) and (14) show performance accuracy of training RBFNN.

Also, value of spread constant is equal to (1) when RBFNN trained on data with
different values for electromagnetic torque while value of spread constant of stator flux is
equal to (0.5) and the sectors is equal to (0.3), at different values of load torque , this means,
the network which has three independent outputs gives right results and exact.

6-CONCLUSION

The paper presents a proposed estimator suitable to work with the DTC system used as a
speed controller for three-phase induction motor in order to reduce the torque ripples. The
proposed RBFNN shows a good substitute to the conventional one due to its easiness in
network operation and gives fastest response and accurate results. These features will help to
reduce the torque ripples of the output torque.
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Fig.(1): Basic diagram of the DTC system [8].
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Fig.(8): RBFNN estimator for (Case No.3).
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Fig.(9): No-load error values for the three cases (a, b, c).
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Fig.(10): Half-load error values for the three cases (a, b, c).
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Fig.(11):Full-load error values for the three cases (a, b, c).
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Table (1)
Average Error No load Half load Full load

T, -casel 0.0471 0.1327 0.0045
T, - case 2 0.0471 0.0373 0.0018
T. - case 3 0.04711 0.00034 0.00078
As case -1 0.0462 0.0365 0.0474
As case -2 0.0327 0.0016 0.0296
As case -3 0.00143 0.00004 0.00010
Sk case -1 0.0020 0.0011 0.0877
Sk case -2 0.0016 0.0006 0.0246
Sk case -3 0.00596 0.00022 0.00225

conventionalestimated stator flux (Weber)

(a) Estimated stator flux.

2 0 2

4

Il
6 8 10 12 14 16

conventional estimated torque (Nm)

(b) Estimated electromagnetic torque.
Fig.(12): Performance accuracy of training RBFNN at (Ty=14 Nm).
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APPENDIX-A

The 3-phase Squirrel-cage induction motor parameters are, 400 volt, 50 Hz, 2.2k watt

shown in the table (A-1).

Table (A-1): the motor parameters.

Parameters

Stator Resistance
Rotor Resistance
Stator Leakage Inductance
Rotor Leakage Inductance
Magnetizing Inductance
Number of Pole
Moment of Inertia
Viscous Friction Coefficient
Rated Speed
Rated Torque

Rated Current per Phase

Rated Power Factor

Symbol

Is

Oy
Tref

Irat

cosd

Value

367 Q
2.10 Q
0.0209 H
0.0209 H
0.224 H
4
0.0155 kg.m’
0.0025 N.m.s
1430 r/min.
14.6 N.m

5.0Amp.
0.81
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