Effect of Nano Materials on Geotechnical Properties of Expansive Soils: A Review
DOI:
https://doi.org/10.24237/djes.2025.18402Keywords:
Expansive Soils, Nanomaterials, Stabilization, Physical Properties, Mechanical Properties.Abstract
Expansive soils are responsible for extensive infrastructure damage worldwide, prompting the urgent search for innovative, sustainable stabilization methods. Nanomaterials have emerged as a promising next-generation solution capable of addressing both performance and environmental challenges. This review investigated the use of nanomaterials such as nano-silica, nano-alumina, nano-copper, nano-MgO, and nano-calcined clay and terrasil, and a combination of nanomaterials with lime or cement (hybrid) as sustainable stabilizers. It was found that plasticity index (PI) decreases by 20-60%, optimum moisture content decreases of 10-12%, and maximum dry density increases of 5-10% for ≤1% nonadditive. Swell potential and swell pressure typically reduced by 20-30% or more at dosages ≤1-1.5%, while hybrid mixes achieve even higher reductions. Strength gains were particularly significant: unconfined compressive strength (UCS) commonly doubles in the short term and exceeds 5 times untreated values with long-term curing, reaching up to 6 times with hybrid stabilization. Similarly, soaked CBR values improve by about 2 times with nanomaterials alone and up to 5-6 times with hybrid systems. These mechanical enhancements were supported by microstructural evidence showing pore filling, formation of cementitious gels (CSH, CAH, MSH, CASH), and surface coatings that densify soil, strengthen particle bonding, and reduce water ingress. Performance was strongly dosage- and material-dependent, with excessive amounts sometimes leading to agglomeration and reduced efficiency. Overall, findings confirmed that nanomaterials, especially when combined with lime or cement, provided a reliable, sustainable, and long-term stabilization approach, offering substantial improvements in expansive soil behavior and geotechnical infrastructure performance.
Downloads
References
[1] A. A. Al-Rawas and M. F. A. Goosen, ''Expansive Soils: Recent Advances in Characterization and Treatment,'' 1st ed. Boca Raton, FL, USA: CRC Press, 2006. doi: 10.1201/9780203968079.
[2] S. Y. Amakye and S. J. Abbey, ''Understanding the performance of expansive subgrade materials treated with non-traditional stabilizers: A review,'' Cleaner Eng. Technol., vol. 4, p. 100159, 2021. doi: 10.1016/j.clet.2021.100159.
[3] J. Nelson and D. J. Miller, ''Expansive Soils: Problems and Practice in Foundation and Pavement Engineering,''. New York, NY, USA: John Wiley and Sons, 1997.
[4] M. Bouatia, R. Demagh, and Z. Derriche, “Structural behavior of pipelines buried in expansive soils under rainfall infiltration (Part I: transverse behaviour),” Civil Engineering Journal, vol. 6, no. 9, pp. 1822-1838, 2020, doi: 10.28991/cej-2020-03091585.
[5] J. G. Zornberg and G. H. Roodi, “Use of geosynthetics to mitigate problems associated with expansive clay subgrades,” Geosynthetics International, vol. 28, no. 3, pp. 279–302, 2021, doi: 10.1680/JGEIN.20.00043.
[6] L. D. Jones and I. Jefferson, “Expansive soils,” in ICE Manual of Geotechnical Engineering, vol. 1: Geotechnical Engineering Principles, Problematic Soils and Site Investigation, M. Brown, J. Burland, T. Chapman, K. Higgins, H. Skinner, and D. Toll, Eds., 2nd ed. London, U.K.: ICE Publishing, 2023, pp. 447–477, doi: 10.1680/icemge.66816.0447.
[7] F. E. Jalal, Y. Xu, B. Jamhiri, and S. A. Memon, “On the recent trends in expansive soil stabilization using calcium-based stabilizer materials (CSMs): A comprehensive review,” Advances in Materials Science and Engineering, vol. 2020, Art. no. 1510969, 2020, doi: 10.1155/2020/1510969.
[8] A. A. Wang, ''Expansive soil and practice in foundation engineering,'' Ph.D. dissertation, Louisiana Tech Univ., Ruston, LA, USA, 2016.
[9] N. C. Consoli, M. Tonini de Araújo, S. Tonatto Ferrazzo, V. de Lima Rodrigues, and C. Gravina da Rocha, “Increasing density and cement content in stabilization of expansive soils: Conflicting or complementary procedures for reducing swelling?,” Canadian Geotechnical Journal, vol. 58, no. 6, pp. 866–878, 2021, doi: 10.1139/cgj-2019-0855.
[10] I. Alkiki, Z. Karabash, and A. Aldaood, “Effect of lime treatment on swelling and some geotechnical properties of an expansive soil from Mosul city,” J. Eng. Sci. Technol., vol. 18, no. 1, pp. 167–186, 2023.
[11] A. S. A. Al-Gharbawi, A. M. Najemalden, and M. Y. Fattah, “Expansive soil stabilization with lime, cement, and silica fume,” Applied Sciences, vol. 13, no. 1, p. 436, 2023, doi: 10.3390/app13010436.
[12] G. N. Eujine, S. Chandrakaran, and N. Sankar, “The engineering behaviour of enzymatic lime-stabilized soils,” Proc. Inst. Civ. Eng., Ground Improvement, vol. 111, 2016, doi: 10.1680/jgrim.16.00014.
[13] J. L. Díaz López, M. Cabrera, F. Agrela, and J. Rosales, “Geotechnical and engineering properties of expansive clayey soil stabilized with biomass ash and nanomaterials for its application in structural road layers,” Geomechanics for Energy and the Environment, vol. 36, Art. no. 100496, 2023, doi: 10.1016/j.gete.2023.100496.
[14] M. R. Taha, T. A. Khan, I. T. Jawad, and A. A. Firoozi, ''Recent experimental studies in soil stabilization with bioenzymes-A review,'' Electronic. J. Geotech. Eng., vol. 18, pp. 3881–3894, 2013.
[15] B. D. Parsana, T. P. Vora, and A. K. Verma, “A study of expansive clay behaviour using nano chemicals,” Materials Today: Proceedings, vol. 81, pp. 570 576, 2023, doi: 10.1016/j.matpr.2021.04.013.
[16] K. Rangaswamy and R. P. Mohan, ''Strengthening the subgrade clay soil using nano chemical stabilization,'' Soils Found., vol. 65, no. 4, p. 101638, 2025. doi.org/10.1016/j.sandf.2025.101638
[17] M. Munawar, A. H. Khan, Z. U. Rehman, A. Rahim, M. Aziz, S. Almuaythir, B. S. I. A. El Kheir, and F. Haider, “Micro to Nanolevel Stabilization of Expansive Clay Using Agro Wastes,” Advances in Civil Engineering, vol. 2023, Art. no. 2753641, 2023, doi: 10.1155/2023/2753641.
[18] T. S. Harianja, D. Amalia, G. D. Anggraini, and L. Z. Mase, “Effect of Macro, Micro, and Nano Lime Particles on the Stabilisation of Expansive Soils,” Eng. J., vol. 29, no. 2, pp. 1–14, Feb. 2025, doi: 10.4186/ej.2025.29.2.1.
[19] J. Rosales, F. Agrela, J. R. Marcobal, J. L. Díaz López, G. M. Cuenca Moyano, Á. Caballero, and M. Cabrera, “Use of nanomaterials in the stabilization of expansive soils into a road real scale application,” Materials, vol. 13, no. 14, art. no. 3058, 2020, doi: 10.3390/ma13143058.
[20] A. Sharo, M. Bani Baker, D. A. Tarawneh, M. Khasawneh, and K. Ghuzlan, “Stabilising highly expansive soil by using Nano Clay additive,” Int. J. Pavement Eng., vol. 26, no. 1, art. no. 2460077, 2025, doi: 10.1080/10298436.2025.2460077.
[21] A. A. Firoozi, M. Naji, and A. A. Firoozi, “Stabilization expansive clayey with nano lime to reduce environmental impact,” J. Kejuruteraan, vol. 34, no. 6, pp. 1085–1091, 2022, doi: 10.17576/jkukm 2022 34(6) 09.
[22] J. F. Rincón Morantes, O. J. Reyes Ortiz, and J. C. Ruge Cárdenas, “Review of the use of nanomaterials in soils for construction of roads,” Respuestas, vol. 25, no. 2, pp. 213–223, 2020, doi: 10.22463/0122820X.2959.
[23] Z. H. Majeed and M. R. Taha, ''A review of stabilization of soils by using nanomaterials,'' Aust. J. Basic Appl. Sci., vol. 7, no. 2, pp. 576–581, 2013.
[24] S. M. Kacha and S. G. Shah, “Review of the nanomaterials used for soil stabilization,” in Proc. Indian Geotech. Conf. 2019, S. Patel, C. H. Solanki, K. R. Reddy, and S. K. Shukla, Eds., Singapore: Springer, vol. 138, pp. 111–118, 2021, doi: 10.1007/978-981-33-6564-3_10.
[25] A. Al-Rubaye, A. Chirica, and I. Boti, ''A review of improvement geotechnical characteristics by nano additives,'' Earth Obs. Surveying, Environ. Eng., vol. 11, 2022.
[26] F. K. Khalaf, M. A. H., M. Y. Fattah, and M. S. Al Shaikli, “A review study on the optimizing the performance of soil using nanomaterials,” Adv. Ind. Eng. Manage., vol. 9, no. 2, pp. 1–10, 2020, doi: 10.7508/aiem.02.2020.01.10.
[27] S. Fu, Z. Sun, P. Huang, Y. Li, and N. Hu, ''Some basic aspects of polymer nanocomposites: A critical review,'' Nano Mater. Sci., vol. 1, no. 1, pp. 2–30, 2019. doi: 10.1016/j.nanoms.2019.02.006.
[28] A. Arora, B. Singh, and P. Kaur, ''Performance of nanoparticles in stabilization of soil: A comprehensive review,'' Mater. Today: Proc., vol. 17, pp. 124–130, 2019. doi: 10.1016/j.matpr.2019.06.409.
[29] N. Ghasabkolaei, A. Janalizadeh Choobbasti, N. Roshan, and S. E. Ghasemi, ''Geotechnical properties of the soils modified with nanomaterials: A comprehensive review,'' Arch. Civil Mech. Eng., vol. 17, no. 3, pp. 639–650, 2017. doi: 10.1016/j.acme.2017.01.010.
[30] R. Suresh and V. Murugaiyan, ''Review of nano materials for predicting strength and volume change behaviour of expansive soils,'' ResearchGate, 2018. doi: 10.13140/RG.2.2.11823.48801.
[31] F. H. Chen, ''Foundations on Expansive Soils'' vol. 12. Amsterdam, The Netherlands: Elsevier, 2012.
[32] M. R. Taha and O. M. E. Taha, ''Influence of nanomaterial on the expansive and shrinkage soil behavior,'' J. Nanopart. Res., vol. 14, no. 10, p. 1190, 2012. doi: 10.1007/s11051-012-1190-0.
[33] S. Naval, K. Chandan, and D. Sharma, ''Stabilization of expansive soil using nanomaterials,'' in Proc. Int. Interdisciplinary Conf. Sci. Technol. Eng. Manage., 2017.
[34] S. Pusadkar, S. Bakhade, and A. I. Dhatrak, “Effect of nano-copper on performance of black cotton soil,” Int. J. Eng. Res. Appl., vol. 7, no. 6, pp. 34–39, 2017. doi: 10.9790/9622-0706073439.
[35] Z. Al-Khazzaz, A. Aldaood, M. Awad, and M. Faris, ''Behavior of clayey soil treated with nano magnesium oxide material,'' Soils and Rocks, vol. 47, no. 1, p. e2024014822, 2023. doi: 10.28927/SR.2024.014822.
[36] H. N. Abdulamer and H. A. Daham, ''Geotechnical study of expansive soil treated with nano-calcium carbonate materials in Al-Faw city, southern Iraq,'' Tikrit J. Eng. Sci., vol. 32, no. 1, pp. 1–8, 2025. doi.org/10.25130/tjes.32.1.14
[37] A. M. Al-Swaidani, I. Hammoud, I. al-Ghuraibi, and A. Meziab, ''Effect of adding nano-calcined clay and nano-lime on the geotechnical properties of expansive clayey soil,'' IOP Conf. Ser.: Mater. Sci. Eng., vol. 615, no. 1, p. 012058, 2019. doi: 10.1088/1757-899X/615/1/012058.
[38] G. R. Pokkunuri, R. K. Sinha, and A. K. Verma, ''Field studies on expansive soil stabilization with nanomaterials and lime for flexible pavement,'' Sustainability, vol. 15, no. 21, p. 15291, 2023. doi: 10.3390/su152115291.
[39] G. Elsayed Abdelrahman, E. Ramadan Ali, and Y. Gomaa Youssef, ''Investigation of various nano-additives impact on the physical and mechanical behavior of expansive soil,'' IOSR J. Mech. Civil Eng. (IOSR-JMCE), vol. 19, no. 5, pp. 50–64, 2022. doi: 10.9790/1684-1905015064.
[40] A. M. Mosa, L. A. Salem, and Q. S. Banyhussan, ''Chemical influence of magnesium oxide on the engineering properties of clayey soils used as road subgrade,'' J. Eng. Sci. Technol., vol. 17, no. 4, pp. 2615–2630, 2022.
[41] N. T. Hirwo, P. Pratikso, and R. Karlinasari, “Study of mechanical behavior of expansive clay due to the addition of nano silica dioxide (SiO₂),” ASTONJADRO, vol. 14, no. 1, pp. 235 243, 2025, doi: 10.32832/astonjadro.v14i1.17079
[42] Y. Shang and Y. Fu, ''Experimental study of the mechanical properties of expansive soil with added nanomaterials,'' Arab. J. Geosci., vol. 11, no. 8, p. 180, 2018. doi: 10.1007/s12517-018-3518-2.
[43] A. Raj and V. Toshniwal, “Characteristic properties of bentonite clay and use of nanomaterials in stabilizing its expansive behavior,” Int. J. Sci. Res., vol. 8, no. 8, pp. 846–852, 2019, doi: 10.21275/ART2020380.
[44] N. T. Hirwo, Pratikso, and R. Karlinasari, ''A study of the effect of addition of nano SiO2 and polyamide fiber toward swelling potential expansive clay,'' IOP Conf. Ser.: Earth Environ. Sci., vol. 1321, no. 1, p. 012054, 2024. doi: 10.1088/1755-1315/1321/1/012054.
[45] James, S. V. Sivapriya, S. Ali, T. R. Madhu and B. Singh, “Wetting and drying resistance of lime-stabilized expansive soils modified with nano-alumina,” Electronic Journal of the Faculty of Civil Engineering Osijek–e-GFOS, vol. 12, no. 22, pp. 70-80, 2021. [Online]. Available: https://doi.org/10.13167/2021.22.6
[46] N. Zulfeqar, A. Khosravi, and S. Zou, “Nano Enhanced Electrokinetic Conditioning of Expansive Soils Using MgO Nanoparticles,” J. Geotechnical & Geoenvironmental Eng.vol. 151, no. 11, Art. no. 04025120, 2025, doi: 10.1061/JGGEFK.GTENG 13769.
[47] W. Awadalseed, J. Zhang, and H. Zhao, ''Experimental study on nano SiO2 and cement modified expansive soil,'' in Proc. GeoShanghai 2018 Int. Conf.: Fundamentals of Soil Behaviours, A. Zhou, J. Tao, X. Gu, and L. Hu, Eds. Singapore: Springer, 2018, pp. 209–217. doi: 10.1007/978-981-13-0125-4_23.
[48] J. Hu, T. Zhao, J. Jia, J. Guo, W. Yang, S. Dong, Z. Li, and T. Gao, “Impact of Nano SiO₂ on the Compressive Strength of Geopolymer Solidified Expansive Soil,” Buildings, vol. 14, no. 10, art. no. 3123, 2024, doi: 10.3390/buildings14103123.
[49] X. Luo, L. Kong, W. Bai, and T. Jian, “Effect of superhydrophobic nano SiO₂ on the geotechnical characteristics of expansive soil,” J. Test. Eval., vol. 50, no. 6, pp. 2932–2947, 2022, doi: 10.1520/JTE20210026.
[50] S. H. Bahmani, B. B. K. Huat, A. Asadi, and N. Farzadnia, ''Stabilization of residual soil using SiO2 nanoparticles and cement,'' Constr. Build. Mater., vol. 64, pp. 350–359, 2014. doi: 10.1016/j.conbuildmat.2014.04.086.
[51] G. Pachideh, M. Gholhaki, and O. Rezaifar, “Experimental study on engineering properties and microstructure of expansive soils treated by lime containing silica nanoparticles under various temperatures,” Geotechnical and Geological Engineering, vol. 39, no. 6, pp. 4157–4168, 2021, doi: 10.1007/s10706 021 01744 9.
[52] N. J. Sahare and M. Raheena, “Swell shrink and microstructural response of expansive soil treated with nanomaterials,” Int. J. Geotechnical Eng., vol. 18, no. 3, pp. 235–248, 2024, doi: 10.1080/19386362.2024.2355949.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sinan Ali, Muwafaq Awad

This work is licensed under a Creative Commons Attribution 4.0 International License.









